L(s) = 1 | + (0.807 + 0.565i)2-s + (−0.351 − 0.966i)4-s + (2.04 − 0.911i)5-s + (−0.275 − 0.590i)7-s + (0.772 − 2.88i)8-s + (2.16 + 0.418i)10-s + (−0.890 − 1.06i)11-s + (−2.93 − 4.19i)13-s + (0.111 − 0.632i)14-s + (0.677 − 0.568i)16-s + (1.18 + 4.41i)17-s + (0.00652 − 0.00376i)19-s + (−1.59 − 1.65i)20-s + (−0.118 − 1.36i)22-s + (6.70 + 3.12i)23-s + ⋯ |
L(s) = 1 | + (0.570 + 0.399i)2-s + (−0.175 − 0.483i)4-s + (0.913 − 0.407i)5-s + (−0.104 − 0.223i)7-s + (0.273 − 1.01i)8-s + (0.684 + 0.132i)10-s + (−0.268 − 0.319i)11-s + (−0.814 − 1.16i)13-s + (0.0298 − 0.169i)14-s + (0.169 − 0.142i)16-s + (0.286 + 1.06i)17-s + (0.00149 − 0.000864i)19-s + (−0.357 − 0.369i)20-s + (−0.0253 − 0.289i)22-s + (1.39 + 0.651i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(0.775+0.630i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(0.775+0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
0.775+0.630i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), 0.775+0.630i)
|
Particular Values
L(1) |
≈ |
1.80543−0.641221i |
L(21) |
≈ |
1.80543−0.641221i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−2.04+0.911i)T |
good | 2 | 1+(−0.807−0.565i)T+(0.684+1.87i)T2 |
| 7 | 1+(0.275+0.590i)T+(−4.49+5.36i)T2 |
| 11 | 1+(0.890+1.06i)T+(−1.91+10.8i)T2 |
| 13 | 1+(2.93+4.19i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−1.18−4.41i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−0.00652+0.00376i)T+(9.5−16.4i)T2 |
| 23 | 1+(−6.70−3.12i)T+(14.7+17.6i)T2 |
| 29 | 1+(−0.586−3.32i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−3.73+1.35i)T+(23.7−19.9i)T2 |
| 37 | 1+(−1.60+0.430i)T+(32.0−18.5i)T2 |
| 41 | 1+(−1.90−0.335i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.929−10.6i)T+(−42.3−7.46i)T2 |
| 47 | 1+(6.61−3.08i)T+(30.2−36.0i)T2 |
| 53 | 1+(−1.18−1.18i)T+53iT2 |
| 59 | 1+(−7.77−6.52i)T+(10.2+58.1i)T2 |
| 61 | 1+(9.02+3.28i)T+(46.7+39.2i)T2 |
| 67 | 1+(12.3−8.62i)T+(22.9−62.9i)T2 |
| 71 | 1+(5.41+3.12i)T+(35.5+61.4i)T2 |
| 73 | 1+(−12.1−3.25i)T+(63.2+36.5i)T2 |
| 79 | 1+(0.782−0.137i)T+(74.2−27.0i)T2 |
| 83 | 1+(5.32−7.59i)T+(−28.3−77.9i)T2 |
| 89 | 1+(5.89+10.2i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.18+0.190i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92407568586431660469202045297, −10.15815700553343106979694071640, −9.536589640838619372751374684035, −8.398646395438730572100019533808, −7.21591413529217253580804091607, −6.09458651965138779794414717970, −5.43366493442251769542124773850, −4.58382788041239992241516300878, −3.02776310722934582923420773692, −1.17921448290620566959215892189,
2.20024352431318745740436581391, 3.00943220754072508205102632688, 4.54336634275867436610717101716, 5.28136498349557179441767659792, 6.66316980370285431611096368681, 7.46832072610149796713753973754, 8.835609351522906087957626827584, 9.532672145774340239691343654926, 10.53789001842868626659561301315, 11.56738997697051011606428115284