L(s) = 1 | + (−1.65 − 1.15i)2-s + (0.704 + 1.93i)4-s + (0.268 − 2.21i)5-s + (0.618 + 1.32i)7-s + (0.0310 − 0.115i)8-s + (−3.00 + 3.35i)10-s + (−1.86 − 2.21i)11-s + (−3.51 − 5.02i)13-s + (0.512 − 2.90i)14-s + (2.97 − 2.49i)16-s + (0.833 + 3.10i)17-s + (3.51 − 2.03i)19-s + (4.48 − 1.04i)20-s + (0.508 + 5.80i)22-s + (−4.58 − 2.14i)23-s + ⋯ |
L(s) = 1 | + (−1.16 − 0.817i)2-s + (0.352 + 0.967i)4-s + (0.120 − 0.992i)5-s + (0.233 + 0.501i)7-s + (0.0109 − 0.0409i)8-s + (−0.951 + 1.06i)10-s + (−0.560 − 0.668i)11-s + (−0.975 − 1.39i)13-s + (0.136 − 0.776i)14-s + (0.742 − 0.623i)16-s + (0.202 + 0.753i)17-s + (0.806 − 0.465i)19-s + (1.00 − 0.233i)20-s + (0.108 + 1.23i)22-s + (−0.957 − 0.446i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.989−0.145i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.989−0.145i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.989−0.145i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(152,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.989−0.145i)
|
Particular Values
L(1) |
≈ |
0.0319389+0.437863i |
L(21) |
≈ |
0.0319389+0.437863i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.268+2.21i)T |
good | 2 | 1+(1.65+1.15i)T+(0.684+1.87i)T2 |
| 7 | 1+(−0.618−1.32i)T+(−4.49+5.36i)T2 |
| 11 | 1+(1.86+2.21i)T+(−1.91+10.8i)T2 |
| 13 | 1+(3.51+5.02i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−0.833−3.10i)T+(−14.7+8.5i)T2 |
| 19 | 1+(−3.51+2.03i)T+(9.5−16.4i)T2 |
| 23 | 1+(4.58+2.14i)T+(14.7+17.6i)T2 |
| 29 | 1+(0.368+2.08i)T+(−27.2+9.91i)T2 |
| 31 | 1+(3.20−1.16i)T+(23.7−19.9i)T2 |
| 37 | 1+(11.3−3.04i)T+(32.0−18.5i)T2 |
| 41 | 1+(0.839+0.147i)T+(38.5+14.0i)T2 |
| 43 | 1+(0.0641−0.732i)T+(−42.3−7.46i)T2 |
| 47 | 1+(2.61−1.21i)T+(30.2−36.0i)T2 |
| 53 | 1+(−0.0757−0.0757i)T+53iT2 |
| 59 | 1+(−2.89−2.43i)T+(10.2+58.1i)T2 |
| 61 | 1+(4.21+1.53i)T+(46.7+39.2i)T2 |
| 67 | 1+(−3.65+2.55i)T+(22.9−62.9i)T2 |
| 71 | 1+(−7.84−4.53i)T+(35.5+61.4i)T2 |
| 73 | 1+(8.04+2.15i)T+(63.2+36.5i)T2 |
| 79 | 1+(−1.44+0.254i)T+(74.2−27.0i)T2 |
| 83 | 1+(−9.69+13.8i)T+(−28.3−77.9i)T2 |
| 89 | 1+(3.05+5.28i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−16.1−1.41i)T+(95.5+16.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47176628619153884260689529538, −9.995830771145236325616453252293, −8.948906844722794208593664511131, −8.300294303225093726524358843021, −7.65163042617805783906505503139, −5.71466252316868071607663540218, −5.07309929381557275018339586035, −3.20043971255025679460830107644, −1.94361646514324600142641366009, −0.40224370568395652211551868479,
1.99177792850579375813037325540, 3.71558397919037740708706520934, 5.23749960536582014368138098676, 6.56958536611748727985331428903, 7.35681002105533185966491854961, 7.64506772158002721986605758834, 9.086688074423638535685030923041, 9.842575274211322582018552017364, 10.37420996491271573436730177789, 11.51281849932363451930863773941