L(s) = 1 | + (−1.65 − 1.15i)2-s + (0.704 + 1.93i)4-s + (0.268 − 2.21i)5-s + (0.618 + 1.32i)7-s + (0.0310 − 0.115i)8-s + (−3.00 + 3.35i)10-s + (−1.86 − 2.21i)11-s + (−3.51 − 5.02i)13-s + (0.512 − 2.90i)14-s + (2.97 − 2.49i)16-s + (0.833 + 3.10i)17-s + (3.51 − 2.03i)19-s + (4.48 − 1.04i)20-s + (0.508 + 5.80i)22-s + (−4.58 − 2.14i)23-s + ⋯ |
L(s) = 1 | + (−1.16 − 0.817i)2-s + (0.352 + 0.967i)4-s + (0.120 − 0.992i)5-s + (0.233 + 0.501i)7-s + (0.0109 − 0.0409i)8-s + (−0.951 + 1.06i)10-s + (−0.560 − 0.668i)11-s + (−0.975 − 1.39i)13-s + (0.136 − 0.776i)14-s + (0.742 − 0.623i)16-s + (0.202 + 0.753i)17-s + (0.806 − 0.465i)19-s + (1.00 − 0.233i)20-s + (0.108 + 1.23i)22-s + (−0.957 − 0.446i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.145i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 - 0.145i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0319389 + 0.437863i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0319389 + 0.437863i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.268 + 2.21i)T \) |
good | 2 | \( 1 + (1.65 + 1.15i)T + (0.684 + 1.87i)T^{2} \) |
| 7 | \( 1 + (-0.618 - 1.32i)T + (-4.49 + 5.36i)T^{2} \) |
| 11 | \( 1 + (1.86 + 2.21i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (3.51 + 5.02i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (-0.833 - 3.10i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.51 + 2.03i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.58 + 2.14i)T + (14.7 + 17.6i)T^{2} \) |
| 29 | \( 1 + (0.368 + 2.08i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (3.20 - 1.16i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (11.3 - 3.04i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (0.839 + 0.147i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (0.0641 - 0.732i)T + (-42.3 - 7.46i)T^{2} \) |
| 47 | \( 1 + (2.61 - 1.21i)T + (30.2 - 36.0i)T^{2} \) |
| 53 | \( 1 + (-0.0757 - 0.0757i)T + 53iT^{2} \) |
| 59 | \( 1 + (-2.89 - 2.43i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (4.21 + 1.53i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-3.65 + 2.55i)T + (22.9 - 62.9i)T^{2} \) |
| 71 | \( 1 + (-7.84 - 4.53i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (8.04 + 2.15i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-1.44 + 0.254i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-9.69 + 13.8i)T + (-28.3 - 77.9i)T^{2} \) |
| 89 | \( 1 + (3.05 + 5.28i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-16.1 - 1.41i)T + (95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47176628619153884260689529538, −9.995830771145236325616453252293, −8.948906844722794208593664511131, −8.300294303225093726524358843021, −7.65163042617805783906505503139, −5.71466252316868071607663540218, −5.07309929381557275018339586035, −3.20043971255025679460830107644, −1.94361646514324600142641366009, −0.40224370568395652211551868479,
1.99177792850579375813037325540, 3.71558397919037740708706520934, 5.23749960536582014368138098676, 6.56958536611748727985331428903, 7.35681002105533185966491854961, 7.64506772158002721986605758834, 9.086688074423638535685030923041, 9.842575274211322582018552017364, 10.37420996491271573436730177789, 11.51281849932363451930863773941