L(s) = 1 | + (−0.160 − 0.0140i)2-s + (−1.94 − 0.342i)4-s + (0.476 + 2.18i)5-s + (−2.37 − 1.66i)7-s + (0.617 + 0.165i)8-s + (−0.0456 − 0.356i)10-s + (1.48 − 4.09i)11-s + (−0.412 − 4.71i)13-s + (0.356 + 0.299i)14-s + (3.61 + 1.31i)16-s + (5.66 − 1.51i)17-s + (0.695 − 0.401i)19-s + (−0.176 − 4.41i)20-s + (−0.296 + 0.635i)22-s + (−1.52 − 2.18i)23-s + ⋯ |
L(s) = 1 | + (−0.113 − 0.00991i)2-s + (−0.972 − 0.171i)4-s + (0.212 + 0.977i)5-s + (−0.896 − 0.627i)7-s + (0.218 + 0.0585i)8-s + (−0.0144 − 0.112i)10-s + (0.449 − 1.23i)11-s + (−0.114 − 1.30i)13-s + (0.0953 + 0.0800i)14-s + (0.903 + 0.328i)16-s + (1.37 − 0.368i)17-s + (0.159 − 0.0920i)19-s + (−0.0394 − 0.986i)20-s + (−0.0631 + 0.135i)22-s + (−0.318 − 0.455i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(0.219+0.975i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(0.219+0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
0.219+0.975i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(368,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), 0.219+0.975i)
|
Particular Values
L(1) |
≈ |
0.646582−0.517042i |
L(21) |
≈ |
0.646582−0.517042i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.476−2.18i)T |
good | 2 | 1+(0.160+0.0140i)T+(1.96+0.347i)T2 |
| 7 | 1+(2.37+1.66i)T+(2.39+6.57i)T2 |
| 11 | 1+(−1.48+4.09i)T+(−8.42−7.07i)T2 |
| 13 | 1+(0.412+4.71i)T+(−12.8+2.25i)T2 |
| 17 | 1+(−5.66+1.51i)T+(14.7−8.5i)T2 |
| 19 | 1+(−0.695+0.401i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.52+2.18i)T+(−7.86+21.6i)T2 |
| 29 | 1+(2.06−1.73i)T+(5.03−28.5i)T2 |
| 31 | 1+(−1.27+7.23i)T+(−29.1−10.6i)T2 |
| 37 | 1+(0.841+3.14i)T+(−32.0+18.5i)T2 |
| 41 | 1+(2.88−3.44i)T+(−7.11−40.3i)T2 |
| 43 | 1+(2.90+6.22i)T+(−27.6+32.9i)T2 |
| 47 | 1+(3.17−4.52i)T+(−16.0−44.1i)T2 |
| 53 | 1+(−1.70+1.70i)T−53iT2 |
| 59 | 1+(−4.31+1.57i)T+(45.1−37.9i)T2 |
| 61 | 1+(−2.10−11.9i)T+(−57.3+20.8i)T2 |
| 67 | 1+(6.65−0.582i)T+(65.9−11.6i)T2 |
| 71 | 1+(−5.61−3.24i)T+(35.5+61.4i)T2 |
| 73 | 1+(−2.49+9.31i)T+(−63.2−36.5i)T2 |
| 79 | 1+(0.322+0.384i)T+(−13.7+77.7i)T2 |
| 83 | 1+(−0.780+8.92i)T+(−81.7−14.4i)T2 |
| 89 | 1+(−6.84−11.8i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−6.60+3.08i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73630968574037110066622498677, −10.12423858420807865382457283738, −9.490291589240479603252970069403, −8.274718093115253550453149775014, −7.41046112467796865700899710586, −6.17010048084521429011255991933, −5.45603086279410905249743314479, −3.75115298587931973406005895761, −3.12141847978682974822897515253, −0.61305738115205673928502334144,
1.61813760210631701019077345371, 3.58288404823801596334033927082, 4.62323235853229240098812607293, 5.51729514472619127944987085046, 6.73017359213762821272766035573, 7.979414662881680603623343267765, 8.920139644466763970508939451887, 9.625542388432066927957824214399, 9.961123197701585678833010629423, 11.92907520047227523909770461918