L(s) = 1 | + (0.0152 + 0.00133i)2-s + (−1.96 − 0.347i)4-s + (1.79 + 1.33i)5-s + (0.211 + 0.148i)7-s + (−0.0589 − 0.0158i)8-s + (0.0255 + 0.0226i)10-s + (−1.49 + 4.11i)11-s + (0.187 + 2.14i)13-s + (0.00301 + 0.00253i)14-s + (3.75 + 1.36i)16-s + (−1.70 + 0.456i)17-s + (4.91 − 2.83i)19-s + (−3.06 − 3.25i)20-s + (−0.0282 + 0.0605i)22-s + (3.32 + 4.74i)23-s + ⋯ |
L(s) = 1 | + (0.0107 + 0.000940i)2-s + (−0.984 − 0.173i)4-s + (0.802 + 0.596i)5-s + (0.0799 + 0.0559i)7-s + (−0.0208 − 0.00558i)8-s + (0.00806 + 0.00717i)10-s + (−0.451 + 1.23i)11-s + (0.0519 + 0.594i)13-s + (0.000806 + 0.000676i)14-s + (0.939 + 0.341i)16-s + (−0.412 + 0.110i)17-s + (1.12 − 0.651i)19-s + (−0.686 − 0.727i)20-s + (−0.00601 + 0.0129i)22-s + (0.693 + 0.989i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(0.379−0.925i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(0.379−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
0.379−0.925i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(368,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), 0.379−0.925i)
|
Particular Values
L(1) |
≈ |
0.970005+0.650613i |
L(21) |
≈ |
0.970005+0.650613i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−1.79−1.33i)T |
good | 2 | 1+(−0.0152−0.00133i)T+(1.96+0.347i)T2 |
| 7 | 1+(−0.211−0.148i)T+(2.39+6.57i)T2 |
| 11 | 1+(1.49−4.11i)T+(−8.42−7.07i)T2 |
| 13 | 1+(−0.187−2.14i)T+(−12.8+2.25i)T2 |
| 17 | 1+(1.70−0.456i)T+(14.7−8.5i)T2 |
| 19 | 1+(−4.91+2.83i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.32−4.74i)T+(−7.86+21.6i)T2 |
| 29 | 1+(3.59−3.01i)T+(5.03−28.5i)T2 |
| 31 | 1+(0.912−5.17i)T+(−29.1−10.6i)T2 |
| 37 | 1+(0.837+3.12i)T+(−32.0+18.5i)T2 |
| 41 | 1+(0.241−0.288i)T+(−7.11−40.3i)T2 |
| 43 | 1+(−3.84−8.25i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−2.29+3.28i)T+(−16.0−44.1i)T2 |
| 53 | 1+(−8.15+8.15i)T−53iT2 |
| 59 | 1+(10.6−3.86i)T+(45.1−37.9i)T2 |
| 61 | 1+(2.10+11.9i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−1.82+0.160i)T+(65.9−11.6i)T2 |
| 71 | 1+(4.44+2.56i)T+(35.5+61.4i)T2 |
| 73 | 1+(−3.71+13.8i)T+(−63.2−36.5i)T2 |
| 79 | 1+(−1.98−2.37i)T+(−13.7+77.7i)T2 |
| 83 | 1+(−0.432+4.94i)T+(−81.7−14.4i)T2 |
| 89 | 1+(−1.44−2.50i)T+(−44.5+77.0i)T2 |
| 97 | 1+(4.27−1.99i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27807766308572291881528792626, −10.36599060959774239284467987159, −9.475895689691754641730473773565, −9.090746656284520158728110070285, −7.60755925854980515299392007369, −6.78486064291313070112335821027, −5.44977470031089115676618959757, −4.77684288052826768601096985221, −3.32792127684363019341922616540, −1.77346081509742684541433016099,
0.836872879079531810798887576801, 2.87204742447380718936998715550, 4.22199215023551456195996302684, 5.38625881495130920522718092042, 5.91965773192701788223175089374, 7.61582297273030522601915853096, 8.509887703605462983906559084343, 9.165410469360617553172994709547, 10.05900173074457708366173101165, 10.93853824974532208365491633303