L(s) = 1 | + (1.36 + 0.119i)2-s + (−0.116 − 0.0204i)4-s + (0.119 − 2.23i)5-s + (−2.68 − 1.87i)7-s + (−2.80 − 0.752i)8-s + (0.430 − 3.03i)10-s + (1.85 − 5.10i)11-s + (0.215 + 2.45i)13-s + (−3.44 − 2.88i)14-s + (−3.52 − 1.28i)16-s + (3.45 − 0.925i)17-s + (0.417 − 0.240i)19-s + (−0.0595 + 0.256i)20-s + (3.14 − 6.75i)22-s + (4.01 + 5.73i)23-s + ⋯ |
L(s) = 1 | + (0.966 + 0.0845i)2-s + (−0.0580 − 0.0102i)4-s + (0.0533 − 0.998i)5-s + (−1.01 − 0.710i)7-s + (−0.992 − 0.265i)8-s + (0.136 − 0.960i)10-s + (0.560 − 1.53i)11-s + (0.0596 + 0.682i)13-s + (−0.920 − 0.772i)14-s + (−0.881 − 0.320i)16-s + (0.837 − 0.224i)17-s + (0.0957 − 0.0552i)19-s + (−0.0133 + 0.0574i)20-s + (0.671 − 1.43i)22-s + (0.836 + 1.19i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.0316+0.999i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.0316+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.0316+0.999i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(368,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.0316+0.999i)
|
Particular Values
L(1) |
≈ |
1.12393−1.16010i |
L(21) |
≈ |
1.12393−1.16010i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.119+2.23i)T |
good | 2 | 1+(−1.36−0.119i)T+(1.96+0.347i)T2 |
| 7 | 1+(2.68+1.87i)T+(2.39+6.57i)T2 |
| 11 | 1+(−1.85+5.10i)T+(−8.42−7.07i)T2 |
| 13 | 1+(−0.215−2.45i)T+(−12.8+2.25i)T2 |
| 17 | 1+(−3.45+0.925i)T+(14.7−8.5i)T2 |
| 19 | 1+(−0.417+0.240i)T+(9.5−16.4i)T2 |
| 23 | 1+(−4.01−5.73i)T+(−7.86+21.6i)T2 |
| 29 | 1+(0.0993−0.0833i)T+(5.03−28.5i)T2 |
| 31 | 1+(−0.509+2.88i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−1.67−6.26i)T+(−32.0+18.5i)T2 |
| 41 | 1+(0.215−0.256i)T+(−7.11−40.3i)T2 |
| 43 | 1+(2.45+5.27i)T+(−27.6+32.9i)T2 |
| 47 | 1+(−6.80+9.71i)T+(−16.0−44.1i)T2 |
| 53 | 1+(−0.167+0.167i)T−53iT2 |
| 59 | 1+(−3.62+1.32i)T+(45.1−37.9i)T2 |
| 61 | 1+(0.855+4.85i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−4.25+0.372i)T+(65.9−11.6i)T2 |
| 71 | 1+(7.10+4.10i)T+(35.5+61.4i)T2 |
| 73 | 1+(3.51−13.1i)T+(−63.2−36.5i)T2 |
| 79 | 1+(−6.44−7.68i)T+(−13.7+77.7i)T2 |
| 83 | 1+(0.00128−0.0147i)T+(−81.7−14.4i)T2 |
| 89 | 1+(−2.55−4.43i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.77+1.75i)T+(62.3−74.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39565941741432138277106657643, −9.910320742238438589025859272371, −9.238968747704411594855651977558, −8.428928401775509291085978175362, −6.97302105237956893252642777138, −5.97989903907316855530613732670, −5.21019896235707241373999936652, −3.94534828288221950468432048663, −3.33150518012964986064903342424, −0.808356813514134886802002065448,
2.55913681700033657167755101910, 3.37354403552302781057840167144, 4.54698607096700825346911697735, 5.77640924719070583254153610036, 6.49717143264732401954204284543, 7.51199804698055596730578531391, 8.959297187703191317367847971762, 9.732638010266989990693150939137, 10.57169338685208125893003709310, 11.84629581198131580448529680350