Properties

Label 2-405-135.103-c2-0-24
Degree $2$
Conductor $405$
Sign $0.769 + 0.638i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.149 + 1.71i)2-s + (1.03 + 0.182i)4-s + (2.66 − 4.23i)5-s + (−10.9 − 7.63i)7-s + (−2.24 + 8.37i)8-s + (6.84 + 5.18i)10-s + (5.04 + 1.83i)11-s + (−0.598 − 6.84i)13-s + (14.7 − 17.5i)14-s + (−10.0 − 3.66i)16-s + (−2.36 − 8.82i)17-s + (17.3 − 9.99i)19-s + (3.52 − 3.88i)20-s + (−3.90 + 8.36i)22-s + (8.21 − 5.75i)23-s + ⋯
L(s)  = 1  + (−0.0748 + 0.855i)2-s + (0.258 + 0.0455i)4-s + (0.532 − 0.846i)5-s + (−1.55 − 1.09i)7-s + (−0.280 + 1.04i)8-s + (0.684 + 0.518i)10-s + (0.459 + 0.167i)11-s + (−0.0460 − 0.526i)13-s + (1.05 − 1.25i)14-s + (−0.628 − 0.228i)16-s + (−0.139 − 0.518i)17-s + (0.911 − 0.525i)19-s + (0.176 − 0.194i)20-s + (−0.177 + 0.380i)22-s + (0.357 − 0.250i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.769 + 0.638i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.769 + 0.638i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $0.769 + 0.638i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (118, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ 0.769 + 0.638i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.39523 - 0.503028i\)
\(L(\frac12)\) \(\approx\) \(1.39523 - 0.503028i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-2.66 + 4.23i)T \)
good2 \( 1 + (0.149 - 1.71i)T + (-3.93 - 0.694i)T^{2} \)
7 \( 1 + (10.9 + 7.63i)T + (16.7 + 46.0i)T^{2} \)
11 \( 1 + (-5.04 - 1.83i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (0.598 + 6.84i)T + (-166. + 29.3i)T^{2} \)
17 \( 1 + (2.36 + 8.82i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (-17.3 + 9.99i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-8.21 + 5.75i)T + (180. - 497. i)T^{2} \)
29 \( 1 + (15.0 + 17.9i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (-9.98 + 56.6i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (12.0 + 44.9i)T + (-1.18e3 + 684.5i)T^{2} \)
41 \( 1 + (-15.9 - 13.3i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-6.05 - 12.9i)T + (-1.18e3 + 1.41e3i)T^{2} \)
47 \( 1 + (-5.84 - 4.09i)T + (755. + 2.07e3i)T^{2} \)
53 \( 1 + (22.7 + 22.7i)T + 2.80e3iT^{2} \)
59 \( 1 + (-24.7 - 68.1i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (3.42 + 19.4i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (-37.5 + 3.28i)T + (4.42e3 - 779. i)T^{2} \)
71 \( 1 + (-23.5 + 40.7i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (19.9 - 74.2i)T + (-4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (-25.2 - 30.1i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (-32.6 - 2.85i)T + (6.78e3 + 1.19e3i)T^{2} \)
89 \( 1 + (111. - 64.5i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (52.8 - 24.6i)T + (6.04e3 - 7.20e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85150972489483891332454679270, −9.669667725727006586174474096533, −9.285878450388020224374212064068, −7.913483715332154796387197087644, −7.10904380128770227310944299899, −6.29840471116052873912478393001, −5.44066301617783018030022726165, −4.07120914290620630413402870398, −2.64948352005774595177011703899, −0.63761834198674376871380399772, 1.71314850708270081769421355943, 2.96330038949387618972631738803, 3.48028188614636406834362985804, 5.61200740459433804833638519304, 6.48414857797823267412285976059, 7.01058529026278929820880189652, 8.855343614725198263598426105685, 9.601482258663942999866976723480, 10.18568976533187725949080295987, 11.12691355592291080673525736781

Graph of the $Z$-function along the critical line