Properties

Label 2-405-1.1-c7-0-13
Degree $2$
Conductor $405$
Sign $1$
Analytic cond. $126.515$
Root an. cond. $11.2479$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13.0·2-s + 41.0·4-s + 125·5-s − 107.·7-s + 1.13e3·8-s − 1.62e3·10-s − 2.56e3·11-s − 1.45e4·13-s + 1.40e3·14-s − 1.99e4·16-s + 1.30e4·17-s − 2.07e4·19-s + 5.13e3·20-s + 3.33e4·22-s − 6.19e4·23-s + 1.56e4·25-s + 1.88e5·26-s − 4.42e3·28-s − 1.85e5·29-s + 2.35e5·31-s + 1.14e5·32-s − 1.69e5·34-s − 1.34e4·35-s + 4.29e5·37-s + 2.69e5·38-s + 1.41e5·40-s + 3.06e5·41-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.320·4-s + 0.447·5-s − 0.118·7-s + 0.780·8-s − 0.513·10-s − 0.580·11-s − 1.83·13-s + 0.136·14-s − 1.21·16-s + 0.642·17-s − 0.693·19-s + 0.143·20-s + 0.667·22-s − 1.06·23-s + 0.199·25-s + 2.10·26-s − 0.0380·28-s − 1.41·29-s + 1.42·31-s + 0.618·32-s − 0.738·34-s − 0.0531·35-s + 1.39·37-s + 0.797·38-s + 0.349·40-s + 0.693·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(126.515\)
Root analytic conductor: \(11.2479\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.5016856136\)
\(L(\frac12)\) \(\approx\) \(0.5016856136\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 125T \)
good2 \( 1 + 13.0T + 128T^{2} \)
7 \( 1 + 107.T + 8.23e5T^{2} \)
11 \( 1 + 2.56e3T + 1.94e7T^{2} \)
13 \( 1 + 1.45e4T + 6.27e7T^{2} \)
17 \( 1 - 1.30e4T + 4.10e8T^{2} \)
19 \( 1 + 2.07e4T + 8.93e8T^{2} \)
23 \( 1 + 6.19e4T + 3.40e9T^{2} \)
29 \( 1 + 1.85e5T + 1.72e10T^{2} \)
31 \( 1 - 2.35e5T + 2.75e10T^{2} \)
37 \( 1 - 4.29e5T + 9.49e10T^{2} \)
41 \( 1 - 3.06e5T + 1.94e11T^{2} \)
43 \( 1 + 6.46e5T + 2.71e11T^{2} \)
47 \( 1 + 5.42e5T + 5.06e11T^{2} \)
53 \( 1 + 8.27e4T + 1.17e12T^{2} \)
59 \( 1 - 1.02e6T + 2.48e12T^{2} \)
61 \( 1 + 1.02e6T + 3.14e12T^{2} \)
67 \( 1 + 3.72e5T + 6.06e12T^{2} \)
71 \( 1 + 2.79e6T + 9.09e12T^{2} \)
73 \( 1 - 1.53e6T + 1.10e13T^{2} \)
79 \( 1 - 6.07e6T + 1.92e13T^{2} \)
83 \( 1 - 2.81e6T + 2.71e13T^{2} \)
89 \( 1 + 6.08e6T + 4.42e13T^{2} \)
97 \( 1 + 9.25e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.814507269827344916861357957566, −9.483661149609963891039620181206, −8.147493160343104976242475339783, −7.68079905125975689471240171374, −6.56875851162300575494241565101, −5.31048588599468529451681876147, −4.35903322098039183126392956498, −2.67337614441427254763282779362, −1.75418913512080214710005431867, −0.37959165308324565153156785042, 0.37959165308324565153156785042, 1.75418913512080214710005431867, 2.67337614441427254763282779362, 4.35903322098039183126392956498, 5.31048588599468529451681876147, 6.56875851162300575494241565101, 7.68079905125975689471240171374, 8.147493160343104976242475339783, 9.483661149609963891039620181206, 9.814507269827344916861357957566

Graph of the $Z$-function along the critical line