Properties

Label 2-405-1.1-c7-0-101
Degree $2$
Conductor $405$
Sign $-1$
Analytic cond. $126.515$
Root an. cond. $11.2479$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16.3·2-s + 140.·4-s + 125·5-s − 716.·7-s + 205.·8-s + 2.04e3·10-s − 1.00e3·11-s + 7.39e3·13-s − 1.17e4·14-s − 1.46e4·16-s − 2.73e4·17-s + 5.19e4·19-s + 1.75e4·20-s − 1.64e4·22-s + 8.39e4·23-s + 1.56e4·25-s + 1.21e5·26-s − 1.00e5·28-s − 2.54e5·29-s − 1.75e5·31-s − 2.65e5·32-s − 4.47e5·34-s − 8.95e4·35-s − 3.19e4·37-s + 8.51e5·38-s + 2.57e4·40-s − 2.37e5·41-s + ⋯
L(s)  = 1  + 1.44·2-s + 1.09·4-s + 0.447·5-s − 0.789·7-s + 0.142·8-s + 0.647·10-s − 0.228·11-s + 0.933·13-s − 1.14·14-s − 0.892·16-s − 1.34·17-s + 1.73·19-s + 0.491·20-s − 0.330·22-s + 1.43·23-s + 0.199·25-s + 1.35·26-s − 0.867·28-s − 1.93·29-s − 1.06·31-s − 1.43·32-s − 1.95·34-s − 0.353·35-s − 0.103·37-s + 2.51·38-s + 0.0636·40-s − 0.537·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(126.515\)
Root analytic conductor: \(11.2479\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 405,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 125T \)
good2 \( 1 - 16.3T + 128T^{2} \)
7 \( 1 + 716.T + 8.23e5T^{2} \)
11 \( 1 + 1.00e3T + 1.94e7T^{2} \)
13 \( 1 - 7.39e3T + 6.27e7T^{2} \)
17 \( 1 + 2.73e4T + 4.10e8T^{2} \)
19 \( 1 - 5.19e4T + 8.93e8T^{2} \)
23 \( 1 - 8.39e4T + 3.40e9T^{2} \)
29 \( 1 + 2.54e5T + 1.72e10T^{2} \)
31 \( 1 + 1.75e5T + 2.75e10T^{2} \)
37 \( 1 + 3.19e4T + 9.49e10T^{2} \)
41 \( 1 + 2.37e5T + 1.94e11T^{2} \)
43 \( 1 + 6.44e4T + 2.71e11T^{2} \)
47 \( 1 + 7.81e5T + 5.06e11T^{2} \)
53 \( 1 + 5.77e5T + 1.17e12T^{2} \)
59 \( 1 + 1.08e6T + 2.48e12T^{2} \)
61 \( 1 + 1.99e6T + 3.14e12T^{2} \)
67 \( 1 - 5.83e3T + 6.06e12T^{2} \)
71 \( 1 + 2.30e6T + 9.09e12T^{2} \)
73 \( 1 - 7.54e5T + 1.10e13T^{2} \)
79 \( 1 + 1.68e6T + 1.92e13T^{2} \)
83 \( 1 - 5.75e6T + 2.71e13T^{2} \)
89 \( 1 + 7.58e6T + 4.42e13T^{2} \)
97 \( 1 + 1.39e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.507689567687772383057571016108, −8.958716451724610317519546968041, −7.32741327208448161442537859854, −6.48707324578545692987401156287, −5.65076900786987672407402575198, −4.86538073249086272867823620905, −3.59965435998627098622554068909, −3.00181323598661985907419268973, −1.66171516821484321234736136877, 0, 1.66171516821484321234736136877, 3.00181323598661985907419268973, 3.59965435998627098622554068909, 4.86538073249086272867823620905, 5.65076900786987672407402575198, 6.48707324578545692987401156287, 7.32741327208448161442537859854, 8.958716451724610317519546968041, 9.507689567687772383057571016108

Graph of the $Z$-function along the critical line