L(s) = 1 | + 0.732·2-s − 1.46·4-s + 5-s − 4.73·7-s − 2.53·8-s + 0.732·10-s − 5.73·11-s + 1.46·13-s − 3.46·14-s + 1.07·16-s − 2.73·17-s + 4.46·19-s − 1.46·20-s − 4.19·22-s − 3.46·23-s + 25-s + 1.07·26-s + 6.92·28-s + 3.19·29-s − 3·31-s + 5.85·32-s − 2·34-s − 4.73·35-s − 2.73·37-s + 3.26·38-s − 2.53·40-s − 7.19·41-s + ⋯ |
L(s) = 1 | + 0.517·2-s − 0.732·4-s + 0.447·5-s − 1.78·7-s − 0.896·8-s + 0.231·10-s − 1.72·11-s + 0.406·13-s − 0.925·14-s + 0.267·16-s − 0.662·17-s + 1.02·19-s − 0.327·20-s − 0.894·22-s − 0.722·23-s + 0.200·25-s + 0.210·26-s + 1.30·28-s + 0.593·29-s − 0.538·31-s + 1.03·32-s − 0.342·34-s − 0.799·35-s − 0.449·37-s + 0.530·38-s − 0.400·40-s − 1.12·41-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
good | 2 | 1−0.732T+2T2 |
| 7 | 1+4.73T+7T2 |
| 11 | 1+5.73T+11T2 |
| 13 | 1−1.46T+13T2 |
| 17 | 1+2.73T+17T2 |
| 19 | 1−4.46T+19T2 |
| 23 | 1+3.46T+23T2 |
| 29 | 1−3.19T+29T2 |
| 31 | 1+3T+31T2 |
| 37 | 1+2.73T+37T2 |
| 41 | 1+7.19T+41T2 |
| 43 | 1−0.196T+43T2 |
| 47 | 1+8.73T+47T2 |
| 53 | 1−6.73T+53T2 |
| 59 | 1+8.26T+59T2 |
| 61 | 1−4T+61T2 |
| 67 | 1−3.46T+67T2 |
| 71 | 1+3.73T+71T2 |
| 73 | 1+7.66T+73T2 |
| 79 | 1−15.4T+79T2 |
| 83 | 1−2.19T+83T2 |
| 89 | 1−5.19T+89T2 |
| 97 | 1+9.66T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53395455354729580116053469386, −9.891659987097994186587409226244, −9.160920829589346233820277538329, −8.113279120425039489990623479181, −6.77562535273111037724955155460, −5.84110997200682682606964101848, −5.05003835867806828695676183738, −3.61864026751503349114017566624, −2.75549156342552231674726398882, 0,
2.75549156342552231674726398882, 3.61864026751503349114017566624, 5.05003835867806828695676183738, 5.84110997200682682606964101848, 6.77562535273111037724955155460, 8.113279120425039489990623479181, 9.160920829589346233820277538329, 9.891659987097994186587409226244, 10.53395455354729580116053469386