L(s) = 1 | − 2-s − 4-s + 5-s − 3·7-s + 3·8-s − 10-s + 2·11-s − 2·13-s + 3·14-s − 16-s − 4·17-s − 8·19-s − 20-s − 2·22-s − 3·23-s + 25-s + 2·26-s + 3·28-s + 29-s − 5·32-s + 4·34-s − 3·35-s − 4·37-s + 8·38-s + 3·40-s − 5·41-s − 8·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 0.447·5-s − 1.13·7-s + 1.06·8-s − 0.316·10-s + 0.603·11-s − 0.554·13-s + 0.801·14-s − 1/4·16-s − 0.970·17-s − 1.83·19-s − 0.223·20-s − 0.426·22-s − 0.625·23-s + 1/5·25-s + 0.392·26-s + 0.566·28-s + 0.185·29-s − 0.883·32-s + 0.685·34-s − 0.507·35-s − 0.657·37-s + 1.29·38-s + 0.474·40-s − 0.780·41-s − 1.21·43-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
good | 2 | 1+T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1−T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+5T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−14T+pT2 |
| 61 | 1−7T+pT2 |
| 67 | 1+3T+pT2 |
| 71 | 1+2T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1+6T+pT2 |
| 83 | 1+9T+pT2 |
| 89 | 1−15T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32043257877866718022672062677, −9.946177052534403132870451803520, −8.964305577132556078601253128051, −8.406907006225460062267410041104, −6.95907981187563203473208917697, −6.29557968587596560657178728455, −4.84628635731234228377894729907, −3.75836640301739809806939141128, −2.06014522909482997436709887093, 0,
2.06014522909482997436709887093, 3.75836640301739809806939141128, 4.84628635731234228377894729907, 6.29557968587596560657178728455, 6.95907981187563203473208917697, 8.406907006225460062267410041104, 8.964305577132556078601253128051, 9.946177052534403132870451803520, 10.32043257877866718022672062677