L(s) = 1 | − 2.51·2-s + 4.32·4-s − 5-s − 0.514·7-s − 5.83·8-s + 2.51·10-s + 3.32·11-s − 1.32·13-s + 1.29·14-s + 6.02·16-s + 3.32·17-s − 1.32·19-s − 4.32·20-s − 8.34·22-s − 4.12·23-s + 25-s + 3.32·26-s − 2.22·28-s + 1.38·29-s + 8.73·31-s − 3.48·32-s − 8.34·34-s + 0.514·35-s + 0.292·37-s + 3.32·38-s + 5.83·40-s + 11.3·41-s + ⋯ |
L(s) = 1 | − 1.77·2-s + 2.16·4-s − 0.447·5-s − 0.194·7-s − 2.06·8-s + 0.795·10-s + 1.00·11-s − 0.366·13-s + 0.345·14-s + 1.50·16-s + 0.805·17-s − 0.303·19-s − 0.966·20-s − 1.78·22-s − 0.860·23-s + 0.200·25-s + 0.651·26-s − 0.419·28-s + 0.257·29-s + 1.56·31-s − 0.616·32-s − 1.43·34-s + 0.0869·35-s + 0.0481·37-s + 0.538·38-s + 0.922·40-s + 1.77·41-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5616801339 |
L(21) |
≈ |
0.5616801339 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
good | 2 | 1+2.51T+2T2 |
| 7 | 1+0.514T+7T2 |
| 11 | 1−3.32T+11T2 |
| 13 | 1+1.32T+13T2 |
| 17 | 1−3.32T+17T2 |
| 19 | 1+1.32T+19T2 |
| 23 | 1+4.12T+23T2 |
| 29 | 1−1.38T+29T2 |
| 31 | 1−8.73T+31T2 |
| 37 | 1−0.292T+37T2 |
| 41 | 1−11.3T+41T2 |
| 43 | 1−10.3T+43T2 |
| 47 | 1−4.86T+47T2 |
| 53 | 1−5.02T+53T2 |
| 59 | 1−5.02T+59T2 |
| 61 | 1−7.34T+61T2 |
| 67 | 1−9.44T+67T2 |
| 71 | 1+8.99T+71T2 |
| 73 | 1−6.05T+73T2 |
| 79 | 1+8.05T+79T2 |
| 83 | 1+1.54T+83T2 |
| 89 | 1−3T+89T2 |
| 97 | 1+12.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04285306493371508566371080667, −10.07146441959455442372232616676, −9.476007814914580912086630166011, −8.533713877497509955171401547219, −7.79205900265118743413620976189, −6.91898632223280747240435368876, −5.98567514029642307861749193439, −4.11886575434530500089847515341, −2.55449225267992608826531435509, −0.954570366014384757362295281472,
0.954570366014384757362295281472, 2.55449225267992608826531435509, 4.11886575434530500089847515341, 5.98567514029642307861749193439, 6.91898632223280747240435368876, 7.79205900265118743413620976189, 8.533713877497509955171401547219, 9.476007814914580912086630166011, 10.07146441959455442372232616676, 11.04285306493371508566371080667