Properties

Label 2-4032-21.20-c1-0-20
Degree $2$
Conductor $4032$
Sign $0.954 - 0.297i$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.08·5-s + (−2.10 − 1.60i)7-s − 1.23i·11-s + 3.69i·13-s − 6.30·17-s − 7.76i·19-s + 7.17i·23-s − 3.82·25-s + 1.41i·29-s + 4.54i·31-s + (2.27 + 1.74i)35-s − 2.82·37-s + 9.37·41-s + 7.68·43-s + 10.9·47-s + ⋯
L(s)  = 1  − 0.484·5-s + (−0.794 − 0.607i)7-s − 0.371i·11-s + 1.02i·13-s − 1.53·17-s − 1.78i·19-s + 1.49i·23-s − 0.765·25-s + 0.262i·29-s + 0.816i·31-s + (0.384 + 0.294i)35-s − 0.464·37-s + 1.46·41-s + 1.17·43-s + 1.60·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $0.954 - 0.297i$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4032} (3905, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ 0.954 - 0.297i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.060965114\)
\(L(\frac12)\) \(\approx\) \(1.060965114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.10 + 1.60i)T \)
good5 \( 1 + 1.08T + 5T^{2} \)
11 \( 1 + 1.23iT - 11T^{2} \)
13 \( 1 - 3.69iT - 13T^{2} \)
17 \( 1 + 6.30T + 17T^{2} \)
19 \( 1 + 7.76iT - 19T^{2} \)
23 \( 1 - 7.17iT - 23T^{2} \)
29 \( 1 - 1.41iT - 29T^{2} \)
31 \( 1 - 4.54iT - 31T^{2} \)
37 \( 1 + 2.82T + 37T^{2} \)
41 \( 1 - 9.37T + 41T^{2} \)
43 \( 1 - 7.68T + 43T^{2} \)
47 \( 1 - 10.9T + 47T^{2} \)
53 \( 1 + 5.41iT - 53T^{2} \)
59 \( 1 + 6.43T + 59T^{2} \)
61 \( 1 + 9.55iT - 61T^{2} \)
67 \( 1 - 14.3T + 67T^{2} \)
71 \( 1 - 10.6iT - 71T^{2} \)
73 \( 1 + 4.59iT - 73T^{2} \)
79 \( 1 + 9.42T + 79T^{2} \)
83 \( 1 + 1.88T + 83T^{2} \)
89 \( 1 + 5.04T + 89T^{2} \)
97 \( 1 + 5.86iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.645133552533689846624074666941, −7.51930140292655862335730400230, −7.03415255566785219333501234328, −6.48142771718493769925072473226, −5.53285898580179516969449831210, −4.47152060262589015670945260927, −3.99453389477135800055275602960, −3.07029924721182815273987490676, −2.08800306983987690405415543787, −0.65987932129543996026152924071, 0.48455761563029191750948343145, 2.14072186309762356823910429857, 2.80642176236956661924479706469, 3.94850795805984956822055182553, 4.38715502879830520158117405003, 5.77557472720273776906124894323, 5.96754843140118953687736651433, 6.97576675919501487160351646461, 7.74344233724581754809291656078, 8.374733094770543295383881070232

Graph of the $Z$-function along the critical line