Properties

Label 2-4016-1.1-c1-0-24
Degree $2$
Conductor $4016$
Sign $1$
Analytic cond. $32.0679$
Root an. cond. $5.66285$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27·3-s − 4.07·5-s + 2.09·7-s − 1.38·9-s − 5.74·11-s + 4.45·13-s − 5.18·15-s + 1.29·17-s − 1.28·19-s + 2.66·21-s + 1.98·23-s + 11.6·25-s − 5.57·27-s − 0.687·29-s + 7.43·31-s − 7.30·33-s − 8.56·35-s − 9.14·37-s + 5.66·39-s + 6.98·41-s − 5.76·43-s + 5.65·45-s − 9.07·47-s − 2.59·49-s + 1.64·51-s − 11.0·53-s + 23.4·55-s + ⋯
L(s)  = 1  + 0.733·3-s − 1.82·5-s + 0.793·7-s − 0.461·9-s − 1.73·11-s + 1.23·13-s − 1.33·15-s + 0.313·17-s − 0.294·19-s + 0.582·21-s + 0.413·23-s + 2.32·25-s − 1.07·27-s − 0.127·29-s + 1.33·31-s − 1.27·33-s − 1.44·35-s − 1.50·37-s + 0.906·39-s + 1.09·41-s − 0.879·43-s + 0.842·45-s − 1.32·47-s − 0.370·49-s + 0.229·51-s − 1.51·53-s + 3.15·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4016\)    =    \(2^{4} \cdot 251\)
Sign: $1$
Analytic conductor: \(32.0679\)
Root analytic conductor: \(5.66285\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4016,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.393052488\)
\(L(\frac12)\) \(\approx\) \(1.393052488\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
251 \( 1 - T \)
good3 \( 1 - 1.27T + 3T^{2} \)
5 \( 1 + 4.07T + 5T^{2} \)
7 \( 1 - 2.09T + 7T^{2} \)
11 \( 1 + 5.74T + 11T^{2} \)
13 \( 1 - 4.45T + 13T^{2} \)
17 \( 1 - 1.29T + 17T^{2} \)
19 \( 1 + 1.28T + 19T^{2} \)
23 \( 1 - 1.98T + 23T^{2} \)
29 \( 1 + 0.687T + 29T^{2} \)
31 \( 1 - 7.43T + 31T^{2} \)
37 \( 1 + 9.14T + 37T^{2} \)
41 \( 1 - 6.98T + 41T^{2} \)
43 \( 1 + 5.76T + 43T^{2} \)
47 \( 1 + 9.07T + 47T^{2} \)
53 \( 1 + 11.0T + 53T^{2} \)
59 \( 1 - 13.3T + 59T^{2} \)
61 \( 1 - 0.329T + 61T^{2} \)
67 \( 1 - 8.50T + 67T^{2} \)
71 \( 1 - 8.72T + 71T^{2} \)
73 \( 1 - 15.8T + 73T^{2} \)
79 \( 1 + 6.44T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 + 3.38T + 89T^{2} \)
97 \( 1 - 5.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.373366807854520239434023870419, −7.970966657233607208961583847848, −7.35784558334963903583902157785, −6.34164558016984923141852714482, −5.16745309137062870344715955239, −4.69706221579348360417879215912, −3.54470592376005852495166939887, −3.25128730373064803063079179269, −2.14289195333873635960017017522, −0.63377295478491282391165570659, 0.63377295478491282391165570659, 2.14289195333873635960017017522, 3.25128730373064803063079179269, 3.54470592376005852495166939887, 4.69706221579348360417879215912, 5.16745309137062870344715955239, 6.34164558016984923141852714482, 7.35784558334963903583902157785, 7.970966657233607208961583847848, 8.373366807854520239434023870419

Graph of the $Z$-function along the critical line