Properties

Label 2-4002-1.1-c1-0-51
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 0.694·5-s + 6-s + 1.42·7-s − 8-s + 9-s + 0.694·10-s − 0.355·11-s − 12-s − 3.56·13-s − 1.42·14-s + 0.694·15-s + 16-s + 1.04·17-s − 18-s + 5.27·19-s − 0.694·20-s − 1.42·21-s + 0.355·22-s + 23-s + 24-s − 4.51·25-s + 3.56·26-s − 27-s + 1.42·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.310·5-s + 0.408·6-s + 0.537·7-s − 0.353·8-s + 0.333·9-s + 0.219·10-s − 0.107·11-s − 0.288·12-s − 0.987·13-s − 0.380·14-s + 0.179·15-s + 0.250·16-s + 0.254·17-s − 0.235·18-s + 1.20·19-s − 0.155·20-s − 0.310·21-s + 0.0757·22-s + 0.208·23-s + 0.204·24-s − 0.903·25-s + 0.698·26-s − 0.192·27-s + 0.268·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 + 0.694T + 5T^{2} \)
7 \( 1 - 1.42T + 7T^{2} \)
11 \( 1 + 0.355T + 11T^{2} \)
13 \( 1 + 3.56T + 13T^{2} \)
17 \( 1 - 1.04T + 17T^{2} \)
19 \( 1 - 5.27T + 19T^{2} \)
31 \( 1 + 5.90T + 31T^{2} \)
37 \( 1 + 5.70T + 37T^{2} \)
41 \( 1 - 7.61T + 41T^{2} \)
43 \( 1 + 6.55T + 43T^{2} \)
47 \( 1 - 9.84T + 47T^{2} \)
53 \( 1 - 12.1T + 53T^{2} \)
59 \( 1 + 8.02T + 59T^{2} \)
61 \( 1 + 5.20T + 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 + 2.57T + 71T^{2} \)
73 \( 1 + 12.7T + 73T^{2} \)
79 \( 1 - 4.12T + 79T^{2} \)
83 \( 1 + 6.22T + 83T^{2} \)
89 \( 1 + 4.74T + 89T^{2} \)
97 \( 1 + 5.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.904387011286349671984957254510, −7.45009235220868819047093938540, −6.89592174540978437005166426180, −5.75066110639175680005303743730, −5.27548915948487723628126430947, −4.35158198556206738561240274824, −3.33976876639875764922556043736, −2.25355846588248715136308746074, −1.22301653701299104286698947725, 0, 1.22301653701299104286698947725, 2.25355846588248715136308746074, 3.33976876639875764922556043736, 4.35158198556206738561240274824, 5.27548915948487723628126430947, 5.75066110639175680005303743730, 6.89592174540978437005166426180, 7.45009235220868819047093938540, 7.904387011286349671984957254510

Graph of the $Z$-function along the critical line