L(s) = 1 | − 2-s + 3-s + 4-s − 3·5-s − 6-s − 3·7-s − 8-s + 9-s + 3·10-s + 2·11-s + 12-s + 3·14-s − 3·15-s + 16-s + 3·17-s − 18-s − 19-s − 3·20-s − 3·21-s − 2·22-s + 23-s − 24-s + 4·25-s + 27-s − 3·28-s − 29-s + 3·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.34·5-s − 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s + 0.948·10-s + 0.603·11-s + 0.288·12-s + 0.801·14-s − 0.774·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.229·19-s − 0.670·20-s − 0.654·21-s − 0.426·22-s + 0.208·23-s − 0.204·24-s + 4/5·25-s + 0.192·27-s − 0.566·28-s − 0.185·29-s + 0.547·30-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 23 | 1−T |
| 29 | 1+T |
good | 5 | 1+3T+pT2 |
| 7 | 1+3T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+5T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1+11T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+6T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.181287385165343335154846329483, −7.51030725198775318183254953675, −6.77913959791946228009258145967, −6.25910920730510727427596292045, −4.97029829415090071042220572418, −3.88357020461952428072968382897, −3.43432195432228343033354965317, −2.60670009310683293711334821473, −1.18955940393403893990759813368, 0,
1.18955940393403893990759813368, 2.60670009310683293711334821473, 3.43432195432228343033354965317, 3.88357020461952428072968382897, 4.97029829415090071042220572418, 6.25910920730510727427596292045, 6.77913959791946228009258145967, 7.51030725198775318183254953675, 8.181287385165343335154846329483