L(s) = 1 | − 2-s − 3-s + 4-s − 0.662·5-s + 6-s − 0.537·7-s − 8-s + 9-s + 0.662·10-s + 1.91·11-s − 12-s − 2.29·13-s + 0.537·14-s + 0.662·15-s + 16-s − 1.24·17-s − 18-s + 2.15·19-s − 0.662·20-s + 0.537·21-s − 1.91·22-s + 23-s + 24-s − 4.56·25-s + 2.29·26-s − 27-s − 0.537·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.296·5-s + 0.408·6-s − 0.203·7-s − 0.353·8-s + 0.333·9-s + 0.209·10-s + 0.576·11-s − 0.288·12-s − 0.635·13-s + 0.143·14-s + 0.171·15-s + 0.250·16-s − 0.303·17-s − 0.235·18-s + 0.493·19-s − 0.148·20-s + 0.117·21-s − 0.407·22-s + 0.208·23-s + 0.204·24-s − 0.912·25-s + 0.449·26-s − 0.192·27-s − 0.101·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 23 | 1−T |
| 29 | 1−T |
good | 5 | 1+0.662T+5T2 |
| 7 | 1+0.537T+7T2 |
| 11 | 1−1.91T+11T2 |
| 13 | 1+2.29T+13T2 |
| 17 | 1+1.24T+17T2 |
| 19 | 1−2.15T+19T2 |
| 31 | 1−4.51T+31T2 |
| 37 | 1+4.68T+37T2 |
| 41 | 1−3.06T+41T2 |
| 43 | 1−3.78T+43T2 |
| 47 | 1+3.25T+47T2 |
| 53 | 1+1.37T+53T2 |
| 59 | 1−10.9T+59T2 |
| 61 | 1−0.986T+61T2 |
| 67 | 1+13.5T+67T2 |
| 71 | 1−4.39T+71T2 |
| 73 | 1−6.04T+73T2 |
| 79 | 1−0.602T+79T2 |
| 83 | 1+5.40T+83T2 |
| 89 | 1+1.27T+89T2 |
| 97 | 1−10.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.049409319528013506824475400728, −7.35600982146380516398334985665, −6.71282273228537161894178353572, −6.03977870881608757263508343353, −5.15764514691083298485065694326, −4.29636515836982978500304164785, −3.36680924151244308604155666244, −2.29687088851393736990536033869, −1.17405488524144781838885095248, 0,
1.17405488524144781838885095248, 2.29687088851393736990536033869, 3.36680924151244308604155666244, 4.29636515836982978500304164785, 5.15764514691083298485065694326, 6.03977870881608757263508343353, 6.71282273228537161894178353572, 7.35600982146380516398334985665, 8.049409319528013506824475400728