Properties

Label 2-4002-1.1-c1-0-46
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 0.662·5-s + 6-s − 0.537·7-s − 8-s + 9-s + 0.662·10-s + 1.91·11-s − 12-s − 2.29·13-s + 0.537·14-s + 0.662·15-s + 16-s − 1.24·17-s − 18-s + 2.15·19-s − 0.662·20-s + 0.537·21-s − 1.91·22-s + 23-s + 24-s − 4.56·25-s + 2.29·26-s − 27-s − 0.537·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.296·5-s + 0.408·6-s − 0.203·7-s − 0.353·8-s + 0.333·9-s + 0.209·10-s + 0.576·11-s − 0.288·12-s − 0.635·13-s + 0.143·14-s + 0.171·15-s + 0.250·16-s − 0.303·17-s − 0.235·18-s + 0.493·19-s − 0.148·20-s + 0.117·21-s − 0.407·22-s + 0.208·23-s + 0.204·24-s − 0.912·25-s + 0.449·26-s − 0.192·27-s − 0.101·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 + 0.662T + 5T^{2} \)
7 \( 1 + 0.537T + 7T^{2} \)
11 \( 1 - 1.91T + 11T^{2} \)
13 \( 1 + 2.29T + 13T^{2} \)
17 \( 1 + 1.24T + 17T^{2} \)
19 \( 1 - 2.15T + 19T^{2} \)
31 \( 1 - 4.51T + 31T^{2} \)
37 \( 1 + 4.68T + 37T^{2} \)
41 \( 1 - 3.06T + 41T^{2} \)
43 \( 1 - 3.78T + 43T^{2} \)
47 \( 1 + 3.25T + 47T^{2} \)
53 \( 1 + 1.37T + 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 - 0.986T + 61T^{2} \)
67 \( 1 + 13.5T + 67T^{2} \)
71 \( 1 - 4.39T + 71T^{2} \)
73 \( 1 - 6.04T + 73T^{2} \)
79 \( 1 - 0.602T + 79T^{2} \)
83 \( 1 + 5.40T + 83T^{2} \)
89 \( 1 + 1.27T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.049409319528013506824475400728, −7.35600982146380516398334985665, −6.71282273228537161894178353572, −6.03977870881608757263508343353, −5.15764514691083298485065694326, −4.29636515836982978500304164785, −3.36680924151244308604155666244, −2.29687088851393736990536033869, −1.17405488524144781838885095248, 0, 1.17405488524144781838885095248, 2.29687088851393736990536033869, 3.36680924151244308604155666244, 4.29636515836982978500304164785, 5.15764514691083298485065694326, 6.03977870881608757263508343353, 6.71282273228537161894178353572, 7.35600982146380516398334985665, 8.049409319528013506824475400728

Graph of the $Z$-function along the critical line