L(s) = 1 | − 2-s + 3-s + 4-s + 2.56·5-s − 6-s + 2.56·7-s − 8-s + 9-s − 2.56·10-s + 5.12·11-s + 12-s + 3.12·13-s − 2.56·14-s + 2.56·15-s + 16-s − 2.56·17-s − 18-s − 6.56·19-s + 2.56·20-s + 2.56·21-s − 5.12·22-s − 23-s − 24-s + 1.56·25-s − 3.12·26-s + 27-s + 2.56·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.14·5-s − 0.408·6-s + 0.968·7-s − 0.353·8-s + 0.333·9-s − 0.810·10-s + 1.54·11-s + 0.288·12-s + 0.866·13-s − 0.684·14-s + 0.661·15-s + 0.250·16-s − 0.621·17-s − 0.235·18-s − 1.50·19-s + 0.572·20-s + 0.558·21-s − 1.09·22-s − 0.208·23-s − 0.204·24-s + 0.312·25-s − 0.612·26-s + 0.192·27-s + 0.484·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.797066147 |
L(21) |
≈ |
2.797066147 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 23 | 1+T |
| 29 | 1+T |
good | 5 | 1−2.56T+5T2 |
| 7 | 1−2.56T+7T2 |
| 11 | 1−5.12T+11T2 |
| 13 | 1−3.12T+13T2 |
| 17 | 1+2.56T+17T2 |
| 19 | 1+6.56T+19T2 |
| 31 | 1+31T2 |
| 37 | 1−8.56T+37T2 |
| 41 | 1−8.56T+41T2 |
| 43 | 1−6.56T+43T2 |
| 47 | 1+3.68T+47T2 |
| 53 | 1+1.12T+53T2 |
| 59 | 1−3.68T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−7.12T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+12.2T+73T2 |
| 79 | 1+4.24T+79T2 |
| 83 | 1+3.12T+83T2 |
| 89 | 1+7.36T+89T2 |
| 97 | 1+8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.527123084686993755576046113273, −8.008711947197061390407654179175, −6.97687652327412040303079443253, −6.28519106395986755027539087191, −5.82065446891821920264987102351, −4.47554255424077955242147097606, −3.92348113563401435787925842836, −2.54026772422474172275614036592, −1.84737390275365766567595932958, −1.16555889038917173088536466973,
1.16555889038917173088536466973, 1.84737390275365766567595932958, 2.54026772422474172275614036592, 3.92348113563401435787925842836, 4.47554255424077955242147097606, 5.82065446891821920264987102351, 6.28519106395986755027539087191, 6.97687652327412040303079443253, 8.008711947197061390407654179175, 8.527123084686993755576046113273