Properties

Label 2-4002-1.1-c1-0-44
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3.49·5-s − 6-s − 1.05·7-s + 8-s + 9-s + 3.49·10-s + 4.23·11-s − 12-s + 5.43·13-s − 1.05·14-s − 3.49·15-s + 16-s − 3.65·17-s + 18-s − 1.05·19-s + 3.49·20-s + 1.05·21-s + 4.23·22-s + 23-s − 24-s + 7.21·25-s + 5.43·26-s − 27-s − 1.05·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.56·5-s − 0.408·6-s − 0.399·7-s + 0.353·8-s + 0.333·9-s + 1.10·10-s + 1.27·11-s − 0.288·12-s + 1.50·13-s − 0.282·14-s − 0.902·15-s + 0.250·16-s − 0.887·17-s + 0.235·18-s − 0.242·19-s + 0.781·20-s + 0.230·21-s + 0.903·22-s + 0.208·23-s − 0.204·24-s + 1.44·25-s + 1.06·26-s − 0.192·27-s − 0.199·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.852021326\)
\(L(\frac12)\) \(\approx\) \(3.852021326\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 - 3.49T + 5T^{2} \)
7 \( 1 + 1.05T + 7T^{2} \)
11 \( 1 - 4.23T + 11T^{2} \)
13 \( 1 - 5.43T + 13T^{2} \)
17 \( 1 + 3.65T + 17T^{2} \)
19 \( 1 + 1.05T + 19T^{2} \)
31 \( 1 + 4.03T + 31T^{2} \)
37 \( 1 - 7.11T + 37T^{2} \)
41 \( 1 - 4.28T + 41T^{2} \)
43 \( 1 - 8.48T + 43T^{2} \)
47 \( 1 + 4.96T + 47T^{2} \)
53 \( 1 - 9.06T + 53T^{2} \)
59 \( 1 + 13.2T + 59T^{2} \)
61 \( 1 + 6.93T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 9.18T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 - 4.66T + 79T^{2} \)
83 \( 1 + 4.60T + 83T^{2} \)
89 \( 1 + 13.8T + 89T^{2} \)
97 \( 1 - 4.83T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.718957115725790251562882155576, −7.38221378881649191888927957758, −6.50279410499102566864086594319, −6.11815993859787658002547032110, −5.81636428238400712831404758654, −4.67415891929410516698011682525, −4.01144486594651197531888680076, −2.99835264138898912000984326483, −1.90225615557712198814826565915, −1.16256757955017448808660945585, 1.16256757955017448808660945585, 1.90225615557712198814826565915, 2.99835264138898912000984326483, 4.01144486594651197531888680076, 4.67415891929410516698011682525, 5.81636428238400712831404758654, 6.11815993859787658002547032110, 6.50279410499102566864086594319, 7.38221378881649191888927957758, 8.718957115725790251562882155576

Graph of the $Z$-function along the critical line