Properties

Label 2-4002-1.1-c1-0-43
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 2.25·5-s + 6-s + 1.35·7-s − 8-s + 9-s + 2.25·10-s + 1.14·11-s − 12-s + 0.110·13-s − 1.35·14-s + 2.25·15-s + 16-s + 7.57·17-s − 18-s − 7.57·19-s − 2.25·20-s − 1.35·21-s − 1.14·22-s − 23-s + 24-s + 0.0989·25-s − 0.110·26-s − 27-s + 1.35·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.00·5-s + 0.408·6-s + 0.512·7-s − 0.353·8-s + 0.333·9-s + 0.714·10-s + 0.346·11-s − 0.288·12-s + 0.0306·13-s − 0.362·14-s + 0.583·15-s + 0.250·16-s + 1.83·17-s − 0.235·18-s − 1.73·19-s − 0.504·20-s − 0.295·21-s − 0.244·22-s − 0.208·23-s + 0.204·24-s + 0.0197·25-s − 0.0216·26-s − 0.192·27-s + 0.256·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + 2.25T + 5T^{2} \)
7 \( 1 - 1.35T + 7T^{2} \)
11 \( 1 - 1.14T + 11T^{2} \)
13 \( 1 - 0.110T + 13T^{2} \)
17 \( 1 - 7.57T + 17T^{2} \)
19 \( 1 + 7.57T + 19T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 - 11.0T + 37T^{2} \)
41 \( 1 + 6.08T + 41T^{2} \)
43 \( 1 + 7.97T + 43T^{2} \)
47 \( 1 - 4.67T + 47T^{2} \)
53 \( 1 - 10.7T + 53T^{2} \)
59 \( 1 - 11.8T + 59T^{2} \)
61 \( 1 - 14.6T + 61T^{2} \)
67 \( 1 + 5.32T + 67T^{2} \)
71 \( 1 + 1.59T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 - 0.564T + 79T^{2} \)
83 \( 1 + 12.2T + 83T^{2} \)
89 \( 1 + 0.540T + 89T^{2} \)
97 \( 1 + 14.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.171874366711058341682786789228, −7.42912316872687614618812014257, −6.83273811015277338609180970804, −5.88859825357200398995746609355, −5.21957185567357356586545133267, −4.09950670220688562053097865653, −3.60961268161993976456194889568, −2.21989771787079044870588828463, −1.15985899128314676835907903095, 0, 1.15985899128314676835907903095, 2.21989771787079044870588828463, 3.60961268161993976456194889568, 4.09950670220688562053097865653, 5.21957185567357356586545133267, 5.88859825357200398995746609355, 6.83273811015277338609180970804, 7.42912316872687614618812014257, 8.171874366711058341682786789228

Graph of the $Z$-function along the critical line