L(s) = 1 | − 2-s − 3-s + 4-s + 3.59·5-s + 6-s + 1.23·7-s − 8-s + 9-s − 3.59·10-s + 0.260·11-s − 12-s + 5.91·13-s − 1.23·14-s − 3.59·15-s + 16-s − 4.05·17-s − 18-s + 6.94·19-s + 3.59·20-s − 1.23·21-s − 0.260·22-s + 23-s + 24-s + 7.94·25-s − 5.91·26-s − 27-s + 1.23·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.60·5-s + 0.408·6-s + 0.464·7-s − 0.353·8-s + 0.333·9-s − 1.13·10-s + 0.0784·11-s − 0.288·12-s + 1.64·13-s − 0.328·14-s − 0.929·15-s + 0.250·16-s − 0.984·17-s − 0.235·18-s + 1.59·19-s + 0.804·20-s − 0.268·21-s − 0.0554·22-s + 0.208·23-s + 0.204·24-s + 1.58·25-s − 1.16·26-s − 0.192·27-s + 0.232·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.953065197 |
L(21) |
≈ |
1.953065197 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 23 | 1−T |
| 29 | 1+T |
good | 5 | 1−3.59T+5T2 |
| 7 | 1−1.23T+7T2 |
| 11 | 1−0.260T+11T2 |
| 13 | 1−5.91T+13T2 |
| 17 | 1+4.05T+17T2 |
| 19 | 1−6.94T+19T2 |
| 31 | 1−1.73T+31T2 |
| 37 | 1−1.95T+37T2 |
| 41 | 1−1.49T+41T2 |
| 43 | 1+2.42T+43T2 |
| 47 | 1−2.76T+47T2 |
| 53 | 1+2.88T+53T2 |
| 59 | 1−0.426T+59T2 |
| 61 | 1+5.37T+61T2 |
| 67 | 1−15.5T+67T2 |
| 71 | 1−12.9T+71T2 |
| 73 | 1−1.07T+73T2 |
| 79 | 1−5.02T+79T2 |
| 83 | 1−14.5T+83T2 |
| 89 | 1+10.4T+89T2 |
| 97 | 1+11.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.546230897692057138533108236243, −7.83330739329757817726815651296, −6.70340990599368591092550559535, −6.39604839453110415759367122178, −5.56173003943525570699708667975, −5.05008325526529854422952873931, −3.79117649733069022940862403101, −2.63980689308710913991800128661, −1.64627094991400125478324745277, −1.02653446190447595663648990950,
1.02653446190447595663648990950, 1.64627094991400125478324745277, 2.63980689308710913991800128661, 3.79117649733069022940862403101, 5.05008325526529854422952873931, 5.56173003943525570699708667975, 6.39604839453110415759367122178, 6.70340990599368591092550559535, 7.83330739329757817726815651296, 8.546230897692057138533108236243