L(s) = 1 | − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 5·11-s + 12-s + 3·13-s − 15-s + 16-s + 4·17-s − 18-s + 4·19-s − 20-s − 5·22-s − 23-s − 24-s − 4·25-s − 3·26-s + 27-s − 29-s + 30-s + 5·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.50·11-s + 0.288·12-s + 0.832·13-s − 0.258·15-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 1.06·22-s − 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.588·26-s + 0.192·27-s − 0.185·29-s + 0.182·30-s + 0.898·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.958439422 |
L(21) |
≈ |
1.958439422 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 23 | 1+T |
| 29 | 1+T |
good | 5 | 1+T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1−3T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1−4T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1−10T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+7T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1+13T+pT2 |
| 71 | 1+5T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1−18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.582903535103051671220586523393, −7.70107674785881678622186592031, −7.31715568476819843350858462741, −6.32891082747463643586427384833, −5.74985936346118792546956940632, −4.41955874685816877821382920981, −3.67659661269898197194758563403, −3.03538156105061200759572949400, −1.70965449751274279349505212042, −0.946094456404816744025198268194,
0.946094456404816744025198268194, 1.70965449751274279349505212042, 3.03538156105061200759572949400, 3.67659661269898197194758563403, 4.41955874685816877821382920981, 5.74985936346118792546956940632, 6.32891082747463643586427384833, 7.31715568476819843350858462741, 7.70107674785881678622186592031, 8.582903535103051671220586523393