Properties

Label 2-4002-1.1-c1-0-22
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 3.78·5-s − 6-s + 3.57·7-s + 8-s + 9-s − 3.78·10-s + 2.34·11-s − 12-s + 4.66·13-s + 3.57·14-s + 3.78·15-s + 16-s − 1.44·17-s + 18-s − 1.40·19-s − 3.78·20-s − 3.57·21-s + 2.34·22-s − 23-s − 24-s + 9.34·25-s + 4.66·26-s − 27-s + 3.57·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.69·5-s − 0.408·6-s + 1.35·7-s + 0.353·8-s + 0.333·9-s − 1.19·10-s + 0.706·11-s − 0.288·12-s + 1.29·13-s + 0.954·14-s + 0.977·15-s + 0.250·16-s − 0.350·17-s + 0.235·18-s − 0.321·19-s − 0.846·20-s − 0.779·21-s + 0.499·22-s − 0.208·23-s − 0.204·24-s + 1.86·25-s + 0.915·26-s − 0.192·27-s + 0.675·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.307489279\)
\(L(\frac12)\) \(\approx\) \(2.307489279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + 3.78T + 5T^{2} \)
7 \( 1 - 3.57T + 7T^{2} \)
11 \( 1 - 2.34T + 11T^{2} \)
13 \( 1 - 4.66T + 13T^{2} \)
17 \( 1 + 1.44T + 17T^{2} \)
19 \( 1 + 1.40T + 19T^{2} \)
31 \( 1 - 1.30T + 31T^{2} \)
37 \( 1 - 8.01T + 37T^{2} \)
41 \( 1 + 7.66T + 41T^{2} \)
43 \( 1 + 5.48T + 43T^{2} \)
47 \( 1 + 6.80T + 47T^{2} \)
53 \( 1 - 0.554T + 53T^{2} \)
59 \( 1 - 3.88T + 59T^{2} \)
61 \( 1 + 0.342T + 61T^{2} \)
67 \( 1 - 11.2T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 - 0.445T + 73T^{2} \)
79 \( 1 + 5.56T + 79T^{2} \)
83 \( 1 - 8.84T + 83T^{2} \)
89 \( 1 - 7.99T + 89T^{2} \)
97 \( 1 + 8.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.202360613154487162192422962891, −7.80625067621528711616615952810, −6.83201704647473664484900793117, −6.32208835229419961039127583041, −5.22465335773459744901128997490, −4.59013464669652377240529275375, −3.98582485600240340930660886389, −3.40340792365937703475036562351, −1.87910477667840933836565232196, −0.847626420433911442941772139968, 0.847626420433911442941772139968, 1.87910477667840933836565232196, 3.40340792365937703475036562351, 3.98582485600240340930660886389, 4.59013464669652377240529275375, 5.22465335773459744901128997490, 6.32208835229419961039127583041, 6.83201704647473664484900793117, 7.80625067621528711616615952810, 8.202360613154487162192422962891

Graph of the $Z$-function along the critical line