L(s) = 1 | + 2-s − 3-s + 4-s − 3.78·5-s − 6-s + 3.57·7-s + 8-s + 9-s − 3.78·10-s + 2.34·11-s − 12-s + 4.66·13-s + 3.57·14-s + 3.78·15-s + 16-s − 1.44·17-s + 18-s − 1.40·19-s − 3.78·20-s − 3.57·21-s + 2.34·22-s − 23-s − 24-s + 9.34·25-s + 4.66·26-s − 27-s + 3.57·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.69·5-s − 0.408·6-s + 1.35·7-s + 0.353·8-s + 0.333·9-s − 1.19·10-s + 0.706·11-s − 0.288·12-s + 1.29·13-s + 0.954·14-s + 0.977·15-s + 0.250·16-s − 0.350·17-s + 0.235·18-s − 0.321·19-s − 0.846·20-s − 0.779·21-s + 0.499·22-s − 0.208·23-s − 0.204·24-s + 1.86·25-s + 0.915·26-s − 0.192·27-s + 0.675·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.307489279 |
L(21) |
≈ |
2.307489279 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 23 | 1+T |
| 29 | 1+T |
good | 5 | 1+3.78T+5T2 |
| 7 | 1−3.57T+7T2 |
| 11 | 1−2.34T+11T2 |
| 13 | 1−4.66T+13T2 |
| 17 | 1+1.44T+17T2 |
| 19 | 1+1.40T+19T2 |
| 31 | 1−1.30T+31T2 |
| 37 | 1−8.01T+37T2 |
| 41 | 1+7.66T+41T2 |
| 43 | 1+5.48T+43T2 |
| 47 | 1+6.80T+47T2 |
| 53 | 1−0.554T+53T2 |
| 59 | 1−3.88T+59T2 |
| 61 | 1+0.342T+61T2 |
| 67 | 1−11.2T+67T2 |
| 71 | 1−15.1T+71T2 |
| 73 | 1−0.445T+73T2 |
| 79 | 1+5.56T+79T2 |
| 83 | 1−8.84T+83T2 |
| 89 | 1−7.99T+89T2 |
| 97 | 1+8.60T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.202360613154487162192422962891, −7.80625067621528711616615952810, −6.83201704647473664484900793117, −6.32208835229419961039127583041, −5.22465335773459744901128997490, −4.59013464669652377240529275375, −3.98582485600240340930660886389, −3.40340792365937703475036562351, −1.87910477667840933836565232196, −0.847626420433911442941772139968,
0.847626420433911442941772139968, 1.87910477667840933836565232196, 3.40340792365937703475036562351, 3.98582485600240340930660886389, 4.59013464669652377240529275375, 5.22465335773459744901128997490, 6.32208835229419961039127583041, 6.83201704647473664484900793117, 7.80625067621528711616615952810, 8.202360613154487162192422962891