L(s) = 1 | + 2-s + 3-s + 4-s − 2·5-s + 6-s − 4·7-s + 8-s + 9-s − 2·10-s + 12-s − 2·13-s − 4·14-s − 2·15-s + 16-s + 6·17-s + 18-s + 4·19-s − 2·20-s − 4·21-s − 23-s + 24-s − 25-s − 2·26-s + 27-s − 4·28-s + 29-s − 2·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.288·12-s − 0.554·13-s − 1.06·14-s − 0.516·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.447·20-s − 0.872·21-s − 0.208·23-s + 0.204·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.755·28-s + 0.185·29-s − 0.365·30-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.582431080 |
L(21) |
≈ |
2.582431080 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 23 | 1+T |
| 29 | 1−T |
good | 5 | 1+2T+pT2 |
| 7 | 1+4T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1−14T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.117923352354560842576493810952, −7.72241330075962692237819063696, −7.01333323419057346375191818255, −6.24812917471354955721910234661, −5.46356916712438031826540105298, −4.50162287690062263138037116263, −3.55784116503777040358801542907, −3.29995376479477247004032977433, −2.38745920662164929006825210076, −0.792012704452018534737806150565,
0.792012704452018534737806150565, 2.38745920662164929006825210076, 3.29995376479477247004032977433, 3.55784116503777040358801542907, 4.50162287690062263138037116263, 5.46356916712438031826540105298, 6.24812917471354955721910234661, 7.01333323419057346375191818255, 7.72241330075962692237819063696, 8.117923352354560842576493810952