Properties

Label 2-4002-1.1-c1-0-18
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 1.56·5-s − 6-s + 1.95·7-s − 8-s + 9-s + 1.56·10-s − 1.08·11-s + 12-s − 0.218·13-s − 1.95·14-s − 1.56·15-s + 16-s + 7.65·17-s − 18-s − 7.93·19-s − 1.56·20-s + 1.95·21-s + 1.08·22-s + 23-s − 24-s − 2.56·25-s + 0.218·26-s + 27-s + 1.95·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.698·5-s − 0.408·6-s + 0.738·7-s − 0.353·8-s + 0.333·9-s + 0.493·10-s − 0.325·11-s + 0.288·12-s − 0.0605·13-s − 0.521·14-s − 0.403·15-s + 0.250·16-s + 1.85·17-s − 0.235·18-s − 1.82·19-s − 0.349·20-s + 0.426·21-s + 0.230·22-s + 0.208·23-s − 0.204·24-s − 0.512·25-s + 0.0428·26-s + 0.192·27-s + 0.369·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.562789605\)
\(L(\frac12)\) \(\approx\) \(1.562789605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 + 1.56T + 5T^{2} \)
7 \( 1 - 1.95T + 7T^{2} \)
11 \( 1 + 1.08T + 11T^{2} \)
13 \( 1 + 0.218T + 13T^{2} \)
17 \( 1 - 7.65T + 17T^{2} \)
19 \( 1 + 7.93T + 19T^{2} \)
31 \( 1 - 3.20T + 31T^{2} \)
37 \( 1 + 0.314T + 37T^{2} \)
41 \( 1 - 11.4T + 41T^{2} \)
43 \( 1 - 1.34T + 43T^{2} \)
47 \( 1 - 6.23T + 47T^{2} \)
53 \( 1 + 8.75T + 53T^{2} \)
59 \( 1 - 12.7T + 59T^{2} \)
61 \( 1 - 5.49T + 61T^{2} \)
67 \( 1 - 3.05T + 67T^{2} \)
71 \( 1 - 5.51T + 71T^{2} \)
73 \( 1 + 9.40T + 73T^{2} \)
79 \( 1 + 12.4T + 79T^{2} \)
83 \( 1 - 4.40T + 83T^{2} \)
89 \( 1 + 1.55T + 89T^{2} \)
97 \( 1 - 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.356157007317774227264774970488, −7.80743435342889869479355278626, −7.43565541729463868194209663802, −6.39007994534109148126914242761, −5.54247687550545636234077160333, −4.51447147742858893683749105857, −3.79363567087771109781251529602, −2.80978638299004530061618342195, −1.92491183332700487710984118619, −0.78386415290010982350728773879, 0.78386415290010982350728773879, 1.92491183332700487710984118619, 2.80978638299004530061618342195, 3.79363567087771109781251529602, 4.51447147742858893683749105857, 5.54247687550545636234077160333, 6.39007994534109148126914242761, 7.43565541729463868194209663802, 7.80743435342889869479355278626, 8.356157007317774227264774970488

Graph of the $Z$-function along the critical line