L(s) = 1 | + 2-s − 3-s + 4-s − 0.652·5-s − 6-s − 3.89·7-s + 8-s + 9-s − 0.652·10-s + 5.43·11-s − 12-s + 3.14·13-s − 3.89·14-s + 0.652·15-s + 16-s + 4.77·17-s + 18-s − 7.24·19-s − 0.652·20-s + 3.89·21-s + 5.43·22-s − 23-s − 24-s − 4.57·25-s + 3.14·26-s − 27-s − 3.89·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.292·5-s − 0.408·6-s − 1.47·7-s + 0.353·8-s + 0.333·9-s − 0.206·10-s + 1.63·11-s − 0.288·12-s + 0.871·13-s − 1.04·14-s + 0.168·15-s + 0.250·16-s + 1.15·17-s + 0.235·18-s − 1.66·19-s − 0.146·20-s + 0.850·21-s + 1.15·22-s − 0.208·23-s − 0.204·24-s − 0.914·25-s + 0.616·26-s − 0.192·27-s − 0.736·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.106926464 |
L(21) |
≈ |
2.106926464 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 23 | 1+T |
| 29 | 1+T |
good | 5 | 1+0.652T+5T2 |
| 7 | 1+3.89T+7T2 |
| 11 | 1−5.43T+11T2 |
| 13 | 1−3.14T+13T2 |
| 17 | 1−4.77T+17T2 |
| 19 | 1+7.24T+19T2 |
| 31 | 1−5.19T+31T2 |
| 37 | 1+1.28T+37T2 |
| 41 | 1+5.34T+41T2 |
| 43 | 1+2.02T+43T2 |
| 47 | 1−4.83T+47T2 |
| 53 | 1−9.97T+53T2 |
| 59 | 1−11.0T+59T2 |
| 61 | 1+3.43T+61T2 |
| 67 | 1+4.99T+67T2 |
| 71 | 1+0.305T+71T2 |
| 73 | 1+4.98T+73T2 |
| 79 | 1−3.65T+79T2 |
| 83 | 1−8.46T+83T2 |
| 89 | 1−7.44T+89T2 |
| 97 | 1−16.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.514145209929140007297474725741, −7.43058332928863645183539403113, −6.61725892538844719689741717267, −6.24230625122690068411531527643, −5.74479431948903609799879438951, −4.50075422738214119321475005849, −3.75860635541933623105623822082, −3.41908874728328934385418670915, −2.01520868188976670209533314902, −0.77546503125119835742745990205,
0.77546503125119835742745990205, 2.01520868188976670209533314902, 3.41908874728328934385418670915, 3.75860635541933623105623822082, 4.50075422738214119321475005849, 5.74479431948903609799879438951, 6.24230625122690068411531527643, 6.61725892538844719689741717267, 7.43058332928863645183539403113, 8.514145209929140007297474725741