L(s) = 1 | + 2-s − 3-s + 4-s − 1.12·5-s − 6-s − 0.350·7-s + 8-s + 9-s − 1.12·10-s − 2.98·11-s − 12-s + 2.39·13-s − 0.350·14-s + 1.12·15-s + 16-s − 4.11·17-s + 18-s + 8.36·19-s − 1.12·20-s + 0.350·21-s − 2.98·22-s − 23-s − 24-s − 3.73·25-s + 2.39·26-s − 27-s − 0.350·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.503·5-s − 0.408·6-s − 0.132·7-s + 0.353·8-s + 0.333·9-s − 0.356·10-s − 0.901·11-s − 0.288·12-s + 0.664·13-s − 0.0936·14-s + 0.290·15-s + 0.250·16-s − 0.998·17-s + 0.235·18-s + 1.91·19-s − 0.251·20-s + 0.0764·21-s − 0.637·22-s − 0.208·23-s − 0.204·24-s − 0.746·25-s + 0.469·26-s − 0.192·27-s − 0.0662·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.011787513 |
L(21) |
≈ |
2.011787513 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 23 | 1+T |
| 29 | 1+T |
good | 5 | 1+1.12T+5T2 |
| 7 | 1+0.350T+7T2 |
| 11 | 1+2.98T+11T2 |
| 13 | 1−2.39T+13T2 |
| 17 | 1+4.11T+17T2 |
| 19 | 1−8.36T+19T2 |
| 31 | 1−7.08T+31T2 |
| 37 | 1+8.11T+37T2 |
| 41 | 1−8.02T+41T2 |
| 43 | 1−5.37T+43T2 |
| 47 | 1+1.42T+47T2 |
| 53 | 1−1.66T+53T2 |
| 59 | 1+12.0T+59T2 |
| 61 | 1−4.98T+61T2 |
| 67 | 1−13.7T+67T2 |
| 71 | 1−4.56T+71T2 |
| 73 | 1−16.5T+73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1−1.75T+83T2 |
| 89 | 1+7.49T+89T2 |
| 97 | 1−14.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.139082452161990939872671744612, −7.68031456720024839113893264573, −6.84537093591514003515926713445, −6.14894085166250891529018400462, −5.37896614293802357743846322803, −4.78958923365078245463753222779, −3.88789230079512920320002557060, −3.16492370049393667878960154546, −2.10351093880690011808811823647, −0.74554119185062501919586894212,
0.74554119185062501919586894212, 2.10351093880690011808811823647, 3.16492370049393667878960154546, 3.88789230079512920320002557060, 4.78958923365078245463753222779, 5.37896614293802357743846322803, 6.14894085166250891529018400462, 6.84537093591514003515926713445, 7.68031456720024839113893264573, 8.139082452161990939872671744612