L(s) = 1 | − 2-s − 3-s + 4-s + 0.230·5-s + 6-s + 4.59·7-s − 8-s + 9-s − 0.230·10-s − 4.50·11-s − 12-s + 1.15·13-s − 4.59·14-s − 0.230·15-s + 16-s − 7.42·17-s − 18-s − 5.94·19-s + 0.230·20-s − 4.59·21-s + 4.50·22-s + 23-s + 24-s − 4.94·25-s − 1.15·26-s − 27-s + 4.59·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.102·5-s + 0.408·6-s + 1.73·7-s − 0.353·8-s + 0.333·9-s − 0.0728·10-s − 1.35·11-s − 0.288·12-s + 0.320·13-s − 1.22·14-s − 0.0594·15-s + 0.250·16-s − 1.80·17-s − 0.235·18-s − 1.36·19-s + 0.0514·20-s − 1.00·21-s + 0.960·22-s + 0.208·23-s + 0.204·24-s − 0.989·25-s − 0.226·26-s − 0.192·27-s + 0.868·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.048099366 |
L(21) |
≈ |
1.048099366 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 23 | 1−T |
| 29 | 1+T |
good | 5 | 1−0.230T+5T2 |
| 7 | 1−4.59T+7T2 |
| 11 | 1+4.50T+11T2 |
| 13 | 1−1.15T+13T2 |
| 17 | 1+7.42T+17T2 |
| 19 | 1+5.94T+19T2 |
| 31 | 1−6.50T+31T2 |
| 37 | 1−7.29T+37T2 |
| 41 | 1−0.0953T+41T2 |
| 43 | 1−0.941T+43T2 |
| 47 | 1+0.598T+47T2 |
| 53 | 1−13.3T+53T2 |
| 59 | 1+2.94T+59T2 |
| 61 | 1−10.8T+61T2 |
| 67 | 1−2.09T+67T2 |
| 71 | 1−10.9T+71T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1−16.5T+79T2 |
| 83 | 1+1.71T+83T2 |
| 89 | 1−12.5T+89T2 |
| 97 | 1+1.82T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.308141225689569048871619558886, −7.958710481808238266256809122228, −7.09062906218052413076981248971, −6.28636572405820789937375183650, −5.50863859880605912001720531561, −4.70674940525600118228113621584, −4.14820613937935349855855121250, −2.38882215644980644418351265159, −2.01502943840024056540401026618, −0.65810877460570271866895200525,
0.65810877460570271866895200525, 2.01502943840024056540401026618, 2.38882215644980644418351265159, 4.14820613937935349855855121250, 4.70674940525600118228113621584, 5.50863859880605912001720531561, 6.28636572405820789937375183650, 7.09062906218052413076981248971, 7.958710481808238266256809122228, 8.308141225689569048871619558886