L(s) = 1 | + 2-s + 3-s + 4-s − 4.09·5-s + 6-s − 2.85·7-s + 8-s + 9-s − 4.09·10-s + 0.493·11-s + 12-s − 5.03·13-s − 2.85·14-s − 4.09·15-s + 16-s − 0.585·17-s + 18-s + 0.996·19-s − 4.09·20-s − 2.85·21-s + 0.493·22-s + 23-s + 24-s + 11.7·25-s − 5.03·26-s + 27-s − 2.85·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.82·5-s + 0.408·6-s − 1.07·7-s + 0.353·8-s + 0.333·9-s − 1.29·10-s + 0.148·11-s + 0.288·12-s − 1.39·13-s − 0.762·14-s − 1.05·15-s + 0.250·16-s − 0.141·17-s + 0.235·18-s + 0.228·19-s − 0.914·20-s − 0.622·21-s + 0.105·22-s + 0.208·23-s + 0.204·24-s + 2.34·25-s − 0.987·26-s + 0.192·27-s − 0.539·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.833068279 |
L(21) |
≈ |
1.833068279 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 23 | 1−T |
| 29 | 1+T |
good | 5 | 1+4.09T+5T2 |
| 7 | 1+2.85T+7T2 |
| 11 | 1−0.493T+11T2 |
| 13 | 1+5.03T+13T2 |
| 17 | 1+0.585T+17T2 |
| 19 | 1−0.996T+19T2 |
| 31 | 1−4.90T+31T2 |
| 37 | 1+1.11T+37T2 |
| 41 | 1−7.29T+41T2 |
| 43 | 1−6.49T+43T2 |
| 47 | 1−4.69T+47T2 |
| 53 | 1−7.44T+53T2 |
| 59 | 1−1.14T+59T2 |
| 61 | 1+6.67T+61T2 |
| 67 | 1−16.1T+67T2 |
| 71 | 1−6.89T+71T2 |
| 73 | 1−1.12T+73T2 |
| 79 | 1+10.1T+79T2 |
| 83 | 1+0.118T+83T2 |
| 89 | 1+12.2T+89T2 |
| 97 | 1−1.37T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.271007537483241312296107881368, −7.50850245948629598537655109300, −7.16469334894771380670589032414, −6.41376255720479517770213056365, −5.25855755585126495031644283423, −4.37663894612099892163713793325, −3.89938688455993292908169592663, −3.07649981055823145114303463744, −2.49966754385172427101149416578, −0.64937566553249103465873210922,
0.64937566553249103465873210922, 2.49966754385172427101149416578, 3.07649981055823145114303463744, 3.89938688455993292908169592663, 4.37663894612099892163713793325, 5.25855755585126495031644283423, 6.41376255720479517770213056365, 7.16469334894771380670589032414, 7.50850245948629598537655109300, 8.271007537483241312296107881368