L(s) = 1 | + (0.207 − 0.359i)2-s + (0.913 + 1.58i)4-s + (−1.10 − 1.91i)5-s + (0.659 − 1.14i)7-s + 1.59·8-s − 0.920·10-s + (2.60 − 4.51i)11-s + (0.00902 + 0.0156i)13-s + (−0.274 − 0.474i)14-s + (−1.49 + 2.59i)16-s − 3.13·17-s + 0.417·19-s + (2.02 − 3.50i)20-s + (−1.08 − 1.87i)22-s + (0.517 + 0.895i)23-s + ⋯ |
L(s) = 1 | + (0.146 − 0.254i)2-s + (0.456 + 0.791i)4-s + (−0.495 − 0.857i)5-s + (0.249 − 0.431i)7-s + 0.562·8-s − 0.291·10-s + (0.786 − 1.36i)11-s + (0.00250 + 0.00433i)13-s + (−0.0732 − 0.126i)14-s + (−0.374 + 0.648i)16-s − 0.759·17-s + 0.0957·19-s + (0.452 − 0.783i)20-s + (−0.230 − 0.400i)22-s + (0.107 + 0.186i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51943 - 0.877246i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51943 - 0.877246i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.207 + 0.359i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.10 + 1.91i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.659 + 1.14i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.60 + 4.51i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.00902 - 0.0156i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.13T + 17T^{2} \) |
| 19 | \( 1 - 0.417T + 19T^{2} \) |
| 23 | \( 1 + (-0.517 - 0.895i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.90 + 6.76i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.86 + 3.22i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.42T + 37T^{2} \) |
| 41 | \( 1 + (-1.83 - 3.18i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.15 + 7.19i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.54 + 6.14i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 1.30T + 53T^{2} \) |
| 59 | \( 1 + (-1.85 - 3.20i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.45 - 5.98i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.51 - 9.54i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.08T + 71T^{2} \) |
| 73 | \( 1 + 0.546T + 73T^{2} \) |
| 79 | \( 1 + (0.244 - 0.423i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.30 - 3.99i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.37T + 89T^{2} \) |
| 97 | \( 1 + (4.97 - 8.60i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50405198072719088568369464353, −9.148393243024875325243673631237, −8.474588929997743560379054485414, −7.81913107369866811151029452869, −6.82472078853620657370317940369, −5.80440640999260606844842058324, −4.35500284011603084061215121581, −3.90618598406839677672918116741, −2.58996885623054026515537616075, −0.942077806082286805687160254170,
1.62941111586927446646497615605, 2.79064842152111645317478439527, 4.26107663600288145524046492480, 5.12027780206802657918276976746, 6.35327455548472327451285745488, 6.92828468549285061431627344546, 7.61508943466669773993929393038, 8.945896919982508547534742006332, 9.728884522265365264897247460505, 10.70489032839915050723185866519