L(s) = 1 | + (0.207 − 0.359i)2-s + (0.913 + 1.58i)4-s + (−1.10 − 1.91i)5-s + (0.659 − 1.14i)7-s + 1.59·8-s − 0.920·10-s + (2.60 − 4.51i)11-s + (0.00902 + 0.0156i)13-s + (−0.274 − 0.474i)14-s + (−1.49 + 2.59i)16-s − 3.13·17-s + 0.417·19-s + (2.02 − 3.50i)20-s + (−1.08 − 1.87i)22-s + (0.517 + 0.895i)23-s + ⋯ |
L(s) = 1 | + (0.146 − 0.254i)2-s + (0.456 + 0.791i)4-s + (−0.495 − 0.857i)5-s + (0.249 − 0.431i)7-s + 0.562·8-s − 0.291·10-s + (0.786 − 1.36i)11-s + (0.00250 + 0.00433i)13-s + (−0.0732 − 0.126i)14-s + (−0.374 + 0.648i)16-s − 0.759·17-s + 0.0957·19-s + (0.452 − 0.783i)20-s + (−0.230 − 0.400i)22-s + (0.107 + 0.186i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.5+0.866i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.5+0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.5+0.866i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(487,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.5+0.866i)
|
Particular Values
L(1) |
≈ |
1.51943−0.877246i |
L(21) |
≈ |
1.51943−0.877246i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.207+0.359i)T+(−1−1.73i)T2 |
| 5 | 1+(1.10+1.91i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.659+1.14i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.60+4.51i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.00902−0.0156i)T+(−6.5+11.2i)T2 |
| 17 | 1+3.13T+17T2 |
| 19 | 1−0.417T+19T2 |
| 23 | 1+(−0.517−0.895i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.90+6.76i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.86+3.22i)T+(−15.5+26.8i)T2 |
| 37 | 1−4.42T+37T2 |
| 41 | 1+(−1.83−3.18i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.15+7.19i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.54+6.14i)T+(−23.5−40.7i)T2 |
| 53 | 1+1.30T+53T2 |
| 59 | 1+(−1.85−3.20i)T+(−29.5+51.0i)T2 |
| 61 | 1+(3.45−5.98i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.51−9.54i)T+(−33.5+58.0i)T2 |
| 71 | 1+6.08T+71T2 |
| 73 | 1+0.546T+73T2 |
| 79 | 1+(0.244−0.423i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.30−3.99i)T+(−41.5−71.8i)T2 |
| 89 | 1+3.37T+89T2 |
| 97 | 1+(4.97−8.60i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.50405198072719088568369464353, −9.148393243024875325243673631237, −8.474588929997743560379054485414, −7.81913107369866811151029452869, −6.82472078853620657370317940369, −5.80440640999260606844842058324, −4.35500284011603084061215121581, −3.90618598406839677672918116741, −2.58996885623054026515537616075, −0.942077806082286805687160254170,
1.62941111586927446646497615605, 2.79064842152111645317478439527, 4.26107663600288145524046492480, 5.12027780206802657918276976746, 6.35327455548472327451285745488, 6.92828468549285061431627344546, 7.61508943466669773993929393038, 8.945896919982508547534742006332, 9.728884522265365264897247460505, 10.70489032839915050723185866519