Properties

Label 2-3e6-9.4-c1-0-20
Degree 22
Conductor 729729
Sign 11
Analytic cond. 5.821095.82109
Root an. cond. 2.412692.41269
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.388 + 0.673i)2-s + (0.697 − 1.20i)4-s + (1.18 − 2.05i)5-s + (1.25 + 2.16i)7-s + 2.64·8-s + 1.84·10-s + (1.57 + 2.72i)11-s + (−0.668 + 1.15i)13-s + (−0.972 + 1.68i)14-s + (−0.368 − 0.637i)16-s − 6.27·17-s + 8.06·19-s + (−1.65 − 2.87i)20-s + (−1.22 + 2.11i)22-s + (2.02 − 3.51i)23-s + ⋯
L(s)  = 1  + (0.274 + 0.476i)2-s + (0.348 − 0.604i)4-s + (0.531 − 0.920i)5-s + (0.472 + 0.818i)7-s + 0.933·8-s + 0.584·10-s + (0.473 + 0.820i)11-s + (−0.185 + 0.321i)13-s + (−0.259 + 0.450i)14-s + (−0.0920 − 0.159i)16-s − 1.52·17-s + 1.85·19-s + (−0.370 − 0.642i)20-s + (−0.260 + 0.451i)22-s + (0.422 − 0.732i)23-s + ⋯

Functional equation

Λ(s)=(729s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(729s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 729729    =    363^{6}
Sign: 11
Analytic conductor: 5.821095.82109
Root analytic conductor: 2.412692.41269
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ729(244,)\chi_{729} (244, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 729, ( :1/2), 1)(2,\ 729,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.328822.32882
L(12)L(\frac12) \approx 2.328822.32882
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
good2 1+(0.3880.673i)T+(1+1.73i)T2 1 + (-0.388 - 0.673i)T + (-1 + 1.73i)T^{2}
5 1+(1.18+2.05i)T+(2.54.33i)T2 1 + (-1.18 + 2.05i)T + (-2.5 - 4.33i)T^{2}
7 1+(1.252.16i)T+(3.5+6.06i)T2 1 + (-1.25 - 2.16i)T + (-3.5 + 6.06i)T^{2}
11 1+(1.572.72i)T+(5.5+9.52i)T2 1 + (-1.57 - 2.72i)T + (-5.5 + 9.52i)T^{2}
13 1+(0.6681.15i)T+(6.511.2i)T2 1 + (0.668 - 1.15i)T + (-6.5 - 11.2i)T^{2}
17 1+6.27T+17T2 1 + 6.27T + 17T^{2}
19 18.06T+19T2 1 - 8.06T + 19T^{2}
23 1+(2.02+3.51i)T+(11.519.9i)T2 1 + (-2.02 + 3.51i)T + (-11.5 - 19.9i)T^{2}
29 1+(4.64+8.04i)T+(14.5+25.1i)T2 1 + (4.64 + 8.04i)T + (-14.5 + 25.1i)T^{2}
31 1+(1.412.45i)T+(15.526.8i)T2 1 + (1.41 - 2.45i)T + (-15.5 - 26.8i)T^{2}
37 15.53T+37T2 1 - 5.53T + 37T^{2}
41 1+(3.556.15i)T+(20.535.5i)T2 1 + (3.55 - 6.15i)T + (-20.5 - 35.5i)T^{2}
43 1+(1.16+2.02i)T+(21.5+37.2i)T2 1 + (1.16 + 2.02i)T + (-21.5 + 37.2i)T^{2}
47 1+(2.30+3.99i)T+(23.5+40.7i)T2 1 + (2.30 + 3.99i)T + (-23.5 + 40.7i)T^{2}
53 1+0.135T+53T2 1 + 0.135T + 53T^{2}
59 1+(1.993.46i)T+(29.551.0i)T2 1 + (1.99 - 3.46i)T + (-29.5 - 51.0i)T^{2}
61 1+(0.170+0.296i)T+(30.5+52.8i)T2 1 + (0.170 + 0.296i)T + (-30.5 + 52.8i)T^{2}
67 1+(5.068.76i)T+(33.558.0i)T2 1 + (5.06 - 8.76i)T + (-33.5 - 58.0i)T^{2}
71 1+8.19T+71T2 1 + 8.19T + 71T^{2}
73 1+12.3T+73T2 1 + 12.3T + 73T^{2}
79 1+(2.04+3.53i)T+(39.5+68.4i)T2 1 + (2.04 + 3.53i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.4560.790i)T+(41.5+71.8i)T2 1 + (-0.456 - 0.790i)T + (-41.5 + 71.8i)T^{2}
89 13.72T+89T2 1 - 3.72T + 89T^{2}
97 1+(2.995.19i)T+(48.5+84.0i)T2 1 + (-2.99 - 5.19i)T + (-48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.22374936551372005808025845885, −9.390575623874343473979726831055, −8.879496355611182204470469227716, −7.64751552286770437342862948403, −6.76374724687261232175710179859, −5.82807747654853387927488908603, −5.04553970700473545110208740260, −4.43231052278617749852646212338, −2.35949029598725030653252059206, −1.41892294634490554588762506530, 1.53965201446149950478751002517, 2.88879389064029771475394957812, 3.58827201348560494321467195076, 4.76254488527853835085174320210, 6.01708455301529318495399845725, 7.14473376277541375493269445153, 7.45439018504141444559277047007, 8.715031845666089433869888043123, 9.712141844987246544041214406452, 10.82714480498227681716694696944

Graph of the ZZ-function along the critical line