L(s) = 1 | + (0.652 − 0.429i)2-s + (−0.550 + 1.27i)4-s + (1.01 − 1.07i)5-s + (3.77 + 0.441i)7-s + (0.459 + 2.60i)8-s + (0.200 − 1.13i)10-s + (−1.44 + 4.84i)11-s + (0.261 − 4.48i)13-s + (2.65 − 1.33i)14-s + (−0.485 − 0.515i)16-s + (−4.30 + 1.56i)17-s + (4.19 + 1.52i)19-s + (0.814 + 1.88i)20-s + (1.13 + 3.78i)22-s + (3.43 − 0.401i)23-s + ⋯ |
L(s) = 1 | + (0.461 − 0.303i)2-s + (−0.275 + 0.637i)4-s + (0.454 − 0.481i)5-s + (1.42 + 0.166i)7-s + (0.162 + 0.922i)8-s + (0.0635 − 0.360i)10-s + (−0.437 + 1.45i)11-s + (0.0724 − 1.24i)13-s + (0.709 − 0.356i)14-s + (−0.121 − 0.128i)16-s + (−1.04 + 0.380i)17-s + (0.962 + 0.350i)19-s + (0.182 + 0.422i)20-s + (0.241 + 0.806i)22-s + (0.715 − 0.0836i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.907−0.419i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.907−0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.907−0.419i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.907−0.419i)
|
Particular Values
L(1) |
≈ |
2.13303+0.469004i |
L(21) |
≈ |
2.13303+0.469004i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.652+0.429i)T+(0.792−1.83i)T2 |
| 5 | 1+(−1.01+1.07i)T+(−0.290−4.99i)T2 |
| 7 | 1+(−3.77−0.441i)T+(6.81+1.61i)T2 |
| 11 | 1+(1.44−4.84i)T+(−9.19−6.04i)T2 |
| 13 | 1+(−0.261+4.48i)T+(−12.9−1.50i)T2 |
| 17 | 1+(4.30−1.56i)T+(13.0−10.9i)T2 |
| 19 | 1+(−4.19−1.52i)T+(14.5+12.2i)T2 |
| 23 | 1+(−3.43+0.401i)T+(22.3−5.30i)T2 |
| 29 | 1+(−0.583−0.293i)T+(17.3+23.2i)T2 |
| 31 | 1+(−0.393−0.527i)T+(−8.89+29.6i)T2 |
| 37 | 1+(−0.766−0.642i)T+(6.42+36.4i)T2 |
| 41 | 1+(−0.570−0.375i)T+(16.2+37.6i)T2 |
| 43 | 1+(−8.16+1.93i)T+(38.4−19.2i)T2 |
| 47 | 1+(−4.73+6.36i)T+(−13.4−45.0i)T2 |
| 53 | 1+(2.07−3.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(1.51+5.04i)T+(−49.2+32.4i)T2 |
| 61 | 1+(2.68+6.23i)T+(−41.8+44.3i)T2 |
| 67 | 1+(−4.73+2.37i)T+(40.0−53.7i)T2 |
| 71 | 1+(1.06−6.03i)T+(−66.7−24.2i)T2 |
| 73 | 1+(0.764+4.33i)T+(−68.5+24.9i)T2 |
| 79 | 1+(9.39−6.17i)T+(31.2−72.5i)T2 |
| 83 | 1+(1.35−0.891i)T+(32.8−76.2i)T2 |
| 89 | 1+(0.181+1.02i)T+(−83.6+30.4i)T2 |
| 97 | 1+(3.42+3.62i)T+(−5.64+96.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65795229996278987006624207402, −9.544615892547079100857035332967, −8.645102529220618484564256754217, −7.905388026894487888535578812516, −7.23240341419865954025932925950, −5.46671511583230642925673296929, −5.00809813149367326728010469077, −4.17388829366212532653414151648, −2.72349597666272633688659943408, −1.66259339929559840598405799377,
1.14282462103448127595297095064, 2.57942787182437347095882414864, 4.16361503700700928034007597134, 4.94213075669194995492254737609, 5.81130449196698595867822294569, 6.64364972009758406998538310872, 7.58822401350265633838165170564, 8.756438864149266988804320287260, 9.348737939752917283645954191613, 10.58341059247748032480933202499