L(s) = 1 | + (−1.29 + 0.848i)2-s + (0.152 − 0.354i)4-s + (0.349 − 0.370i)5-s + (−3.96 − 0.463i)7-s + (−0.432 − 2.45i)8-s + (−0.136 + 0.774i)10-s + (1.09 − 3.66i)11-s + (−0.181 + 3.10i)13-s + (5.50 − 2.76i)14-s + (3.17 + 3.36i)16-s + (−1.41 + 0.513i)17-s + (6.30 + 2.29i)19-s + (−0.0778 − 0.180i)20-s + (1.69 + 5.66i)22-s + (1.17 − 0.137i)23-s + ⋯ |
L(s) = 1 | + (−0.912 + 0.600i)2-s + (0.0764 − 0.177i)4-s + (0.156 − 0.165i)5-s + (−1.49 − 0.175i)7-s + (−0.153 − 0.868i)8-s + (−0.0431 + 0.244i)10-s + (0.331 − 1.10i)11-s + (−0.0502 + 0.862i)13-s + (1.47 − 0.738i)14-s + (0.793 + 0.840i)16-s + (−0.342 + 0.124i)17-s + (1.44 + 0.526i)19-s + (−0.0173 − 0.0403i)20-s + (0.361 + 1.20i)22-s + (0.245 − 0.0287i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.328−0.944i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.328−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.328−0.944i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(28,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.328−0.944i)
|
Particular Values
L(1) |
≈ |
0.577240+0.410600i |
L(21) |
≈ |
0.577240+0.410600i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(1.29−0.848i)T+(0.792−1.83i)T2 |
| 5 | 1+(−0.349+0.370i)T+(−0.290−4.99i)T2 |
| 7 | 1+(3.96+0.463i)T+(6.81+1.61i)T2 |
| 11 | 1+(−1.09+3.66i)T+(−9.19−6.04i)T2 |
| 13 | 1+(0.181−3.10i)T+(−12.9−1.50i)T2 |
| 17 | 1+(1.41−0.513i)T+(13.0−10.9i)T2 |
| 19 | 1+(−6.30−2.29i)T+(14.5+12.2i)T2 |
| 23 | 1+(−1.17+0.137i)T+(22.3−5.30i)T2 |
| 29 | 1+(−6.17−3.10i)T+(17.3+23.2i)T2 |
| 31 | 1+(0.0276+0.0371i)T+(−8.89+29.6i)T2 |
| 37 | 1+(2.33+1.96i)T+(6.42+36.4i)T2 |
| 41 | 1+(−4.96−3.26i)T+(16.2+37.6i)T2 |
| 43 | 1+(−0.231+0.0549i)T+(38.4−19.2i)T2 |
| 47 | 1+(2.82−3.80i)T+(−13.4−45.0i)T2 |
| 53 | 1+(−6.81+11.7i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−0.400−1.33i)T+(−49.2+32.4i)T2 |
| 61 | 1+(0.124+0.288i)T+(−41.8+44.3i)T2 |
| 67 | 1+(−4.90+2.46i)T+(40.0−53.7i)T2 |
| 71 | 1+(2.03−11.5i)T+(−66.7−24.2i)T2 |
| 73 | 1+(−2.70−15.3i)T+(−68.5+24.9i)T2 |
| 79 | 1+(−11.6+7.69i)T+(31.2−72.5i)T2 |
| 83 | 1+(0.587−0.386i)T+(32.8−76.2i)T2 |
| 89 | 1+(−2.00−11.3i)T+(−83.6+30.4i)T2 |
| 97 | 1+(−8.92−9.46i)T+(−5.64+96.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14878939121849073566447789385, −9.457562219372637542271092173363, −8.991226617557949414717542001583, −8.077433547483631648061023479813, −6.96247975849617207035647453236, −6.53766883216132873629842728288, −5.51442876694796083393115674679, −3.86445366444088374385612445330, −3.12117737889392918575579307217, −0.957978362628039778226041428453,
0.68034864862434686182500903644, 2.37436433902276399903524737471, 3.20284421553495849932047672267, 4.76566705437931413533895344189, 5.87839612036789466636208568986, 6.81365913345522778426581969265, 7.74592950064278293478759835626, 8.906394101880943073354264445331, 9.545160820612522117273584857005, 10.06986251273376368386458153063