Properties

Label 2-3e6-81.31-c1-0-6
Degree $2$
Conductor $729$
Sign $0.928 - 0.370i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.588 − 1.36i)2-s + (−0.141 + 0.149i)4-s + (−0.0932 + 1.60i)5-s + (−1.85 + 0.438i)7-s + (−2.50 − 0.911i)8-s + (2.23 − 0.814i)10-s + (−3.38 + 2.22i)11-s + (1.67 − 0.196i)13-s + (1.68 + 2.26i)14-s + (0.254 + 4.36i)16-s + (4.14 + 3.47i)17-s + (3.70 − 3.10i)19-s + (−0.226 − 0.240i)20-s + (5.03 + 3.30i)22-s + (0.651 + 0.154i)23-s + ⋯
L(s)  = 1  + (−0.415 − 0.964i)2-s + (−0.0706 + 0.0749i)4-s + (−0.0416 + 0.715i)5-s + (−0.699 + 0.165i)7-s + (−0.885 − 0.322i)8-s + (0.707 − 0.257i)10-s + (−1.02 + 0.671i)11-s + (0.465 − 0.0544i)13-s + (0.450 + 0.605i)14-s + (0.0635 + 1.09i)16-s + (1.00 + 0.844i)17-s + (0.849 − 0.712i)19-s + (−0.0506 − 0.0537i)20-s + (1.07 + 0.705i)22-s + (0.135 + 0.0322i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.928 - 0.370i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (676, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.928 - 0.370i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.864663 + 0.166255i\)
\(L(\frac12)\) \(\approx\) \(0.864663 + 0.166255i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (0.588 + 1.36i)T + (-1.37 + 1.45i)T^{2} \)
5 \( 1 + (0.0932 - 1.60i)T + (-4.96 - 0.580i)T^{2} \)
7 \( 1 + (1.85 - 0.438i)T + (6.25 - 3.14i)T^{2} \)
11 \( 1 + (3.38 - 2.22i)T + (4.35 - 10.1i)T^{2} \)
13 \( 1 + (-1.67 + 0.196i)T + (12.6 - 2.99i)T^{2} \)
17 \( 1 + (-4.14 - 3.47i)T + (2.95 + 16.7i)T^{2} \)
19 \( 1 + (-3.70 + 3.10i)T + (3.29 - 18.7i)T^{2} \)
23 \( 1 + (-0.651 - 0.154i)T + (20.5 + 10.3i)T^{2} \)
29 \( 1 + (2.85 - 3.83i)T + (-8.31 - 27.7i)T^{2} \)
31 \( 1 + (-1.39 - 4.66i)T + (-25.9 + 17.0i)T^{2} \)
37 \( 1 + (2.07 - 11.7i)T + (-34.7 - 12.6i)T^{2} \)
41 \( 1 + (4.00 - 9.28i)T + (-28.1 - 29.8i)T^{2} \)
43 \( 1 + (-7.64 - 3.83i)T + (25.6 + 34.4i)T^{2} \)
47 \( 1 + (-0.0578 + 0.193i)T + (-39.2 - 25.8i)T^{2} \)
53 \( 1 + (-2.48 + 4.29i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.58 - 1.04i)T + (23.3 + 54.1i)T^{2} \)
61 \( 1 + (-0.124 - 0.131i)T + (-3.54 + 60.8i)T^{2} \)
67 \( 1 + (7.95 + 10.6i)T + (-19.2 + 64.1i)T^{2} \)
71 \( 1 + (-9.41 + 3.42i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (10.9 + 3.97i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (1.45 + 3.37i)T + (-54.2 + 57.4i)T^{2} \)
83 \( 1 + (2.17 + 5.03i)T + (-56.9 + 60.3i)T^{2} \)
89 \( 1 + (6.65 + 2.42i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (-0.0778 - 1.33i)T + (-96.3 + 11.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36378982262180167537121534760, −9.935282999038440078815763604937, −9.042292409319618452748003112548, −7.954759934386691032698618632273, −6.90799151240319035122018373559, −6.13354548427263973850228833685, −4.99519101784562465543139386773, −3.25047554493592004060208978339, −2.93303807384907315832721379395, −1.42285862591785635012445385268, 0.54039497531238048568727637539, 2.73184848105866042909409875899, 3.80319990910919190793901709146, 5.55467083912137662410966473007, 5.67019045244194233922340216631, 7.09107493896957383112846086466, 7.67762094949207735417197374541, 8.515393224019527114505136673419, 9.249963019731520542684531132052, 10.07078129070551007336399055963

Graph of the $Z$-function along the critical line