L(s) = 1 | + (−0.588 − 1.36i)2-s + (−0.141 + 0.149i)4-s + (−0.0932 + 1.60i)5-s + (−1.85 + 0.438i)7-s + (−2.50 − 0.911i)8-s + (2.23 − 0.814i)10-s + (−3.38 + 2.22i)11-s + (1.67 − 0.196i)13-s + (1.68 + 2.26i)14-s + (0.254 + 4.36i)16-s + (4.14 + 3.47i)17-s + (3.70 − 3.10i)19-s + (−0.226 − 0.240i)20-s + (5.03 + 3.30i)22-s + (0.651 + 0.154i)23-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.964i)2-s + (−0.0706 + 0.0749i)4-s + (−0.0416 + 0.715i)5-s + (−0.699 + 0.165i)7-s + (−0.885 − 0.322i)8-s + (0.707 − 0.257i)10-s + (−1.02 + 0.671i)11-s + (0.465 − 0.0544i)13-s + (0.450 + 0.605i)14-s + (0.0635 + 1.09i)16-s + (1.00 + 0.844i)17-s + (0.849 − 0.712i)19-s + (−0.0506 − 0.0537i)20-s + (1.07 + 0.705i)22-s + (0.135 + 0.0322i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.928−0.370i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.928−0.370i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.928−0.370i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(676,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.928−0.370i)
|
Particular Values
L(1) |
≈ |
0.864663+0.166255i |
L(21) |
≈ |
0.864663+0.166255i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.588+1.36i)T+(−1.37+1.45i)T2 |
| 5 | 1+(0.0932−1.60i)T+(−4.96−0.580i)T2 |
| 7 | 1+(1.85−0.438i)T+(6.25−3.14i)T2 |
| 11 | 1+(3.38−2.22i)T+(4.35−10.1i)T2 |
| 13 | 1+(−1.67+0.196i)T+(12.6−2.99i)T2 |
| 17 | 1+(−4.14−3.47i)T+(2.95+16.7i)T2 |
| 19 | 1+(−3.70+3.10i)T+(3.29−18.7i)T2 |
| 23 | 1+(−0.651−0.154i)T+(20.5+10.3i)T2 |
| 29 | 1+(2.85−3.83i)T+(−8.31−27.7i)T2 |
| 31 | 1+(−1.39−4.66i)T+(−25.9+17.0i)T2 |
| 37 | 1+(2.07−11.7i)T+(−34.7−12.6i)T2 |
| 41 | 1+(4.00−9.28i)T+(−28.1−29.8i)T2 |
| 43 | 1+(−7.64−3.83i)T+(25.6+34.4i)T2 |
| 47 | 1+(−0.0578+0.193i)T+(−39.2−25.8i)T2 |
| 53 | 1+(−2.48+4.29i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.58−1.04i)T+(23.3+54.1i)T2 |
| 61 | 1+(−0.124−0.131i)T+(−3.54+60.8i)T2 |
| 67 | 1+(7.95+10.6i)T+(−19.2+64.1i)T2 |
| 71 | 1+(−9.41+3.42i)T+(54.3−45.6i)T2 |
| 73 | 1+(10.9+3.97i)T+(55.9+46.9i)T2 |
| 79 | 1+(1.45+3.37i)T+(−54.2+57.4i)T2 |
| 83 | 1+(2.17+5.03i)T+(−56.9+60.3i)T2 |
| 89 | 1+(6.65+2.42i)T+(68.1+57.2i)T2 |
| 97 | 1+(−0.0778−1.33i)T+(−96.3+11.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36378982262180167537121534760, −9.935282999038440078815763604937, −9.042292409319618452748003112548, −7.954759934386691032698618632273, −6.90799151240319035122018373559, −6.13354548427263973850228833685, −4.99519101784562465543139386773, −3.25047554493592004060208978339, −2.93303807384907315832721379395, −1.42285862591785635012445385268,
0.54039497531238048568727637539, 2.73184848105866042909409875899, 3.80319990910919190793901709146, 5.55467083912137662410966473007, 5.67019045244194233922340216631, 7.09107493896957383112846086466, 7.67762094949207735417197374541, 8.515393224019527114505136673419, 9.249963019731520542684531132052, 10.07078129070551007336399055963