L(s) = 1 | + (1.85 − 0.673i)2-s + (1.43 − 1.20i)4-s + (0.642 + 3.64i)5-s + (−1.79 − 1.50i)7-s + (−0.118 + 0.205i)8-s + (3.64 + 6.31i)10-s + (−0.378 + 2.14i)11-s + (4.43 + 1.61i)13-s + (−4.34 − 1.58i)14-s + (−0.733 + 4.16i)16-s + (1.46 + 2.54i)17-s + (3.11 − 5.39i)19-s + (5.32 + 4.47i)20-s + (0.745 + 4.22i)22-s + (0.397 − 0.333i)23-s + ⋯ |
L(s) = 1 | + (1.30 − 0.476i)2-s + (0.719 − 0.604i)4-s + (0.287 + 1.63i)5-s + (−0.679 − 0.570i)7-s + (−0.0419 + 0.0727i)8-s + (1.15 + 1.99i)10-s + (−0.114 + 0.646i)11-s + (1.22 + 0.447i)13-s + (−1.16 − 0.422i)14-s + (−0.183 + 1.04i)16-s + (0.355 + 0.616i)17-s + (0.714 − 1.23i)19-s + (1.19 + 0.999i)20-s + (0.158 + 0.900i)22-s + (0.0829 − 0.0695i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 - 0.597i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 - 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.75323 + 0.912321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.75323 + 0.912321i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-1.85 + 0.673i)T + (1.53 - 1.28i)T^{2} \) |
| 5 | \( 1 + (-0.642 - 3.64i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (1.79 + 1.50i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (0.378 - 2.14i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (-4.43 - 1.61i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-1.46 - 2.54i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 + 5.39i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.397 + 0.333i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (-3.28 + 1.19i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (3.29 - 2.76i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.34 + 0.854i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.184 + 1.04i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (0.181 + 0.152i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 - 4.66T + 53T^{2} \) |
| 59 | \( 1 + (2.31 + 13.1i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (2.81 + 2.36i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (13.4 + 4.89i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (0.601 + 1.04i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.34 + 4.05i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-12.0 + 4.37i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-10.6 + 3.86i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (0.349 - 0.605i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.23 - 6.97i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73901511448606785113709791480, −10.03959652839136344048027910115, −8.928675092189099830093709040861, −7.48722778393807856708695883619, −6.62177940758671867495144187830, −6.13903941145718199610070006540, −4.89085619756128327786629267042, −3.65081923333500062862001460880, −3.23049362361987352917731275373, −2.05309941515337270880963107204,
1.07841329206853991397378572291, 3.06847818781508330570251347320, 3.96121184183489133818384992833, 5.08971045413786372665019766930, 5.72747501130122605917182351410, 6.18606099916123878160368494591, 7.64318669703217292689142543088, 8.634843479952912711928818461358, 9.268898022003988219324914036369, 10.19123643079918405126108429171