Properties

Label 2-3e6-27.7-c1-0-14
Degree $2$
Conductor $729$
Sign $0.802 - 0.597i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.85 − 0.673i)2-s + (1.43 − 1.20i)4-s + (0.642 + 3.64i)5-s + (−1.79 − 1.50i)7-s + (−0.118 + 0.205i)8-s + (3.64 + 6.31i)10-s + (−0.378 + 2.14i)11-s + (4.43 + 1.61i)13-s + (−4.34 − 1.58i)14-s + (−0.733 + 4.16i)16-s + (1.46 + 2.54i)17-s + (3.11 − 5.39i)19-s + (5.32 + 4.47i)20-s + (0.745 + 4.22i)22-s + (0.397 − 0.333i)23-s + ⋯
L(s)  = 1  + (1.30 − 0.476i)2-s + (0.719 − 0.604i)4-s + (0.287 + 1.63i)5-s + (−0.679 − 0.570i)7-s + (−0.0419 + 0.0727i)8-s + (1.15 + 1.99i)10-s + (−0.114 + 0.646i)11-s + (1.22 + 0.447i)13-s + (−1.16 − 0.422i)14-s + (−0.183 + 1.04i)16-s + (0.355 + 0.616i)17-s + (0.714 − 1.23i)19-s + (1.19 + 0.999i)20-s + (0.158 + 0.900i)22-s + (0.0829 − 0.0695i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 - 0.597i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 - 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.802 - 0.597i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.802 - 0.597i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.75323 + 0.912321i\)
\(L(\frac12)\) \(\approx\) \(2.75323 + 0.912321i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-1.85 + 0.673i)T + (1.53 - 1.28i)T^{2} \)
5 \( 1 + (-0.642 - 3.64i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (1.79 + 1.50i)T + (1.21 + 6.89i)T^{2} \)
11 \( 1 + (0.378 - 2.14i)T + (-10.3 - 3.76i)T^{2} \)
13 \( 1 + (-4.43 - 1.61i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (-1.46 - 2.54i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.11 + 5.39i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.397 + 0.333i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (-3.28 + 1.19i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (3.29 - 2.76i)T + (5.38 - 30.5i)T^{2} \)
37 \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.34 + 0.854i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-0.184 + 1.04i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (0.181 + 0.152i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 - 4.66T + 53T^{2} \)
59 \( 1 + (2.31 + 13.1i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (2.81 + 2.36i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (13.4 + 4.89i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (0.601 + 1.04i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-2.34 + 4.05i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-12.0 + 4.37i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (-10.6 + 3.86i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (0.349 - 0.605i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (1.23 - 6.97i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73901511448606785113709791480, −10.03959652839136344048027910115, −8.928675092189099830093709040861, −7.48722778393807856708695883619, −6.62177940758671867495144187830, −6.13903941145718199610070006540, −4.89085619756128327786629267042, −3.65081923333500062862001460880, −3.23049362361987352917731275373, −2.05309941515337270880963107204, 1.07841329206853991397378572291, 3.06847818781508330570251347320, 3.96121184183489133818384992833, 5.08971045413786372665019766930, 5.72747501130122605917182351410, 6.18606099916123878160368494591, 7.64318669703217292689142543088, 8.634843479952912711928818461358, 9.268898022003988219324914036369, 10.19123643079918405126108429171

Graph of the $Z$-function along the critical line