L(s) = 1 | + (−0.300 + 1.70i)2-s + (−0.939 − 0.342i)4-s + (−2.65 + 2.22i)5-s + (0.939 − 0.342i)7-s + (−0.866 + 1.50i)8-s + (−2.99 − 5.19i)10-s + (2.65 + 2.22i)11-s + (0.868 + 4.92i)13-s + (0.300 + 1.70i)14-s + (−3.83 − 3.21i)16-s + (0.5 − 0.866i)19-s + (3.25 − 1.18i)20-s + (−4.59 + 3.85i)22-s + (−6.51 − 2.36i)23-s + (1.21 − 6.89i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (−0.212 + 1.20i)2-s + (−0.469 − 0.171i)4-s + (−1.18 + 0.995i)5-s + (0.355 − 0.129i)7-s + (−0.306 + 0.530i)8-s + (−0.948 − 1.64i)10-s + (0.800 + 0.671i)11-s + (0.240 + 1.36i)13-s + (0.0803 + 0.455i)14-s + (−0.957 − 0.803i)16-s + (0.114 − 0.198i)19-s + (0.727 − 0.264i)20-s + (−0.979 + 0.822i)22-s + (−1.35 − 0.494i)23-s + (0.243 − 1.37i)25-s − 1.69·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.330411 - 0.765978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.330411 - 0.765978i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.300 - 1.70i)T + (-1.87 - 0.684i)T^{2} \) |
| 5 | \( 1 + (2.65 - 2.22i)T + (0.868 - 4.92i)T^{2} \) |
| 7 | \( 1 + (-0.939 + 0.342i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (-2.65 - 2.22i)T + (1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-0.868 - 4.92i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.51 + 2.36i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.601 + 3.41i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (4.69 + 1.71i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.601 + 3.41i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (0.766 + 0.642i)T + (7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (3.25 - 1.18i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 + (2.65 - 2.22i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (1.87 - 0.684i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.38 - 7.87i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (-5.19 - 9i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (1.20 - 6.82i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (-5.19 + 9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.0 - 10.9i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14629556924025272178272659423, −9.923268502601765814856170456217, −8.906914236716621049927362324643, −8.088164994621008835861132147430, −7.29003073623305743116255231135, −6.82689875289288719410760460769, −6.01793838319561445440966747196, −4.52336858015314157221092221211, −3.80824384368043512091731142441, −2.21918717256222236748963426204,
0.46999858994274609726907188939, 1.60532324430562213869251787458, 3.31501171786304366492844938198, 3.86222157574954521277513250126, 5.06476211853572887100472274781, 6.18872168982613289868357670276, 7.60349128906222541354859185430, 8.360190269817817939841212416721, 9.009199808918370131259393133197, 10.00651766546700391743742269593