L(s) = 1 | + (−0.300 + 1.70i)2-s + (−0.939 − 0.342i)4-s + (−2.65 + 2.22i)5-s + (0.939 − 0.342i)7-s + (−0.866 + 1.50i)8-s + (−2.99 − 5.19i)10-s + (2.65 + 2.22i)11-s + (0.868 + 4.92i)13-s + (0.300 + 1.70i)14-s + (−3.83 − 3.21i)16-s + (0.5 − 0.866i)19-s + (3.25 − 1.18i)20-s + (−4.59 + 3.85i)22-s + (−6.51 − 2.36i)23-s + (1.21 − 6.89i)25-s − 8.66·26-s + ⋯ |
L(s) = 1 | + (−0.212 + 1.20i)2-s + (−0.469 − 0.171i)4-s + (−1.18 + 0.995i)5-s + (0.355 − 0.129i)7-s + (−0.306 + 0.530i)8-s + (−0.948 − 1.64i)10-s + (0.800 + 0.671i)11-s + (0.240 + 1.36i)13-s + (0.0803 + 0.455i)14-s + (−0.957 − 0.803i)16-s + (0.114 − 0.198i)19-s + (0.727 − 0.264i)20-s + (−0.979 + 0.822i)22-s + (−1.35 − 0.494i)23-s + (0.243 − 1.37i)25-s − 1.69·26-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(−0.686+0.727i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(−0.686+0.727i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
−0.686+0.727i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), −0.686+0.727i)
|
Particular Values
L(1) |
≈ |
0.330411−0.765978i |
L(21) |
≈ |
0.330411−0.765978i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.300−1.70i)T+(−1.87−0.684i)T2 |
| 5 | 1+(2.65−2.22i)T+(0.868−4.92i)T2 |
| 7 | 1+(−0.939+0.342i)T+(5.36−4.49i)T2 |
| 11 | 1+(−2.65−2.22i)T+(1.91+10.8i)T2 |
| 13 | 1+(−0.868−4.92i)T+(−12.2+4.44i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(6.51+2.36i)T+(17.6+14.7i)T2 |
| 29 | 1+(−0.601+3.41i)T+(−27.2−9.91i)T2 |
| 31 | 1+(4.69+1.71i)T+(23.7+19.9i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.601+3.41i)T+(−38.5+14.0i)T2 |
| 43 | 1+(0.766+0.642i)T+(7.46+42.3i)T2 |
| 47 | 1+(3.25−1.18i)T+(36.0−30.2i)T2 |
| 53 | 1−10.3T+53T2 |
| 59 | 1+(2.65−2.22i)T+(10.2−58.1i)T2 |
| 61 | 1+(1.87−0.684i)T+(46.7−39.2i)T2 |
| 67 | 1+(−1.38−7.87i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−5.19−9i)T+(−35.5+61.4i)T2 |
| 73 | 1+(1−1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.173−0.984i)T+(−74.2−27.0i)T2 |
| 83 | 1+(1.20−6.82i)T+(−77.9−28.3i)T2 |
| 89 | 1+(−5.19+9i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−13.0−10.9i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14629556924025272178272659423, −9.923268502601765814856170456217, −8.906914236716621049927362324643, −8.088164994621008835861132147430, −7.29003073623305743116255231135, −6.82689875289288719410760460769, −6.01793838319561445440966747196, −4.52336858015314157221092221211, −3.80824384368043512091731142441, −2.21918717256222236748963426204,
0.46999858994274609726907188939, 1.60532324430562213869251787458, 3.31501171786304366492844938198, 3.86222157574954521277513250126, 5.06476211853572887100472274781, 6.18872168982613289868357670276, 7.60349128906222541354859185430, 8.360190269817817939841212416721, 9.009199808918370131259393133197, 10.00651766546700391743742269593