L(s) = 1 | + (0.300 − 1.70i)2-s + (−0.939 − 0.342i)4-s + (2.65 − 2.22i)5-s + (0.939 − 0.342i)7-s + (0.866 − 1.50i)8-s + (−2.99 − 5.19i)10-s + (−2.65 − 2.22i)11-s + (0.868 + 4.92i)13-s + (−0.300 − 1.70i)14-s + (−3.83 − 3.21i)16-s + (0.5 − 0.866i)19-s + (−3.25 + 1.18i)20-s + (−4.59 + 3.85i)22-s + (6.51 + 2.36i)23-s + (1.21 − 6.89i)25-s + 8.66·26-s + ⋯ |
L(s) = 1 | + (0.212 − 1.20i)2-s + (−0.469 − 0.171i)4-s + (1.18 − 0.995i)5-s + (0.355 − 0.129i)7-s + (0.306 − 0.530i)8-s + (−0.948 − 1.64i)10-s + (−0.800 − 0.671i)11-s + (0.240 + 1.36i)13-s + (−0.0803 − 0.455i)14-s + (−0.957 − 0.803i)16-s + (0.114 − 0.198i)19-s + (−0.727 + 0.264i)20-s + (−0.979 + 0.822i)22-s + (1.35 + 0.494i)23-s + (0.243 − 1.37i)25-s + 1.69·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.883081 - 2.04721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.883081 - 2.04721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.300 + 1.70i)T + (-1.87 - 0.684i)T^{2} \) |
| 5 | \( 1 + (-2.65 + 2.22i)T + (0.868 - 4.92i)T^{2} \) |
| 7 | \( 1 + (-0.939 + 0.342i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (2.65 + 2.22i)T + (1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-0.868 - 4.92i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.51 - 2.36i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (0.601 - 3.41i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (4.69 + 1.71i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.601 - 3.41i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (0.766 + 0.642i)T + (7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (-3.25 + 1.18i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-2.65 + 2.22i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (1.87 - 0.684i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.38 - 7.87i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (5.19 + 9i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.173 - 0.984i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-1.20 + 6.82i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.0 - 10.9i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18700722054856216514550724547, −9.277425558064261322990905750510, −8.876465974020775582839104507821, −7.51873973536084641363063118434, −6.37868333126960020429288477545, −5.25060921636549554577470820489, −4.55973426849479449646016263257, −3.24614602853304289953305633151, −2.04163807764496035973278188877, −1.19475357274974093344576100748,
2.02264235311953138203832965823, 3.03874877494723370325247381901, 4.87262714758576893241418265315, 5.55511068883109287679616244150, 6.25121445900939175952682249904, 7.17643415295584154777043335855, 7.77910628578581401433833208507, 8.797693011515744597603713072820, 9.946108894841672447181167750410, 10.61249588407867013252312480020