Properties

Label 2-3e6-27.25-c1-0-29
Degree 22
Conductor 729729
Sign 0.686+0.727i-0.686 + 0.727i
Analytic cond. 5.821095.82109
Root an. cond. 2.412692.41269
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.300 − 1.70i)2-s + (−0.939 − 0.342i)4-s + (2.65 − 2.22i)5-s + (0.939 − 0.342i)7-s + (0.866 − 1.50i)8-s + (−2.99 − 5.19i)10-s + (−2.65 − 2.22i)11-s + (0.868 + 4.92i)13-s + (−0.300 − 1.70i)14-s + (−3.83 − 3.21i)16-s + (0.5 − 0.866i)19-s + (−3.25 + 1.18i)20-s + (−4.59 + 3.85i)22-s + (6.51 + 2.36i)23-s + (1.21 − 6.89i)25-s + 8.66·26-s + ⋯
L(s)  = 1  + (0.212 − 1.20i)2-s + (−0.469 − 0.171i)4-s + (1.18 − 0.995i)5-s + (0.355 − 0.129i)7-s + (0.306 − 0.530i)8-s + (−0.948 − 1.64i)10-s + (−0.800 − 0.671i)11-s + (0.240 + 1.36i)13-s + (−0.0803 − 0.455i)14-s + (−0.957 − 0.803i)16-s + (0.114 − 0.198i)19-s + (−0.727 + 0.264i)20-s + (−0.979 + 0.822i)22-s + (1.35 + 0.494i)23-s + (0.243 − 1.37i)25-s + 1.69·26-s + ⋯

Functional equation

Λ(s)=(729s/2ΓC(s)L(s)=((0.686+0.727i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(729s/2ΓC(s+1/2)L(s)=((0.686+0.727i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 729729    =    363^{6}
Sign: 0.686+0.727i-0.686 + 0.727i
Analytic conductor: 5.821095.82109
Root analytic conductor: 2.412692.41269
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ729(649,)\chi_{729} (649, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 729, ( :1/2), 0.686+0.727i)(2,\ 729,\ (\ :1/2),\ -0.686 + 0.727i)

Particular Values

L(1)L(1) \approx 0.8830812.04721i0.883081 - 2.04721i
L(12)L(\frac12) \approx 0.8830812.04721i0.883081 - 2.04721i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
good2 1+(0.300+1.70i)T+(1.870.684i)T2 1 + (-0.300 + 1.70i)T + (-1.87 - 0.684i)T^{2}
5 1+(2.65+2.22i)T+(0.8684.92i)T2 1 + (-2.65 + 2.22i)T + (0.868 - 4.92i)T^{2}
7 1+(0.939+0.342i)T+(5.364.49i)T2 1 + (-0.939 + 0.342i)T + (5.36 - 4.49i)T^{2}
11 1+(2.65+2.22i)T+(1.91+10.8i)T2 1 + (2.65 + 2.22i)T + (1.91 + 10.8i)T^{2}
13 1+(0.8684.92i)T+(12.2+4.44i)T2 1 + (-0.868 - 4.92i)T + (-12.2 + 4.44i)T^{2}
17 1+(8.5+14.7i)T2 1 + (-8.5 + 14.7i)T^{2}
19 1+(0.5+0.866i)T+(9.516.4i)T2 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2}
23 1+(6.512.36i)T+(17.6+14.7i)T2 1 + (-6.51 - 2.36i)T + (17.6 + 14.7i)T^{2}
29 1+(0.6013.41i)T+(27.29.91i)T2 1 + (0.601 - 3.41i)T + (-27.2 - 9.91i)T^{2}
31 1+(4.69+1.71i)T+(23.7+19.9i)T2 1 + (4.69 + 1.71i)T + (23.7 + 19.9i)T^{2}
37 1+(0.50.866i)T+(18.5+32.0i)T2 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2}
41 1+(0.6013.41i)T+(38.5+14.0i)T2 1 + (-0.601 - 3.41i)T + (-38.5 + 14.0i)T^{2}
43 1+(0.766+0.642i)T+(7.46+42.3i)T2 1 + (0.766 + 0.642i)T + (7.46 + 42.3i)T^{2}
47 1+(3.25+1.18i)T+(36.030.2i)T2 1 + (-3.25 + 1.18i)T + (36.0 - 30.2i)T^{2}
53 1+10.3T+53T2 1 + 10.3T + 53T^{2}
59 1+(2.65+2.22i)T+(10.258.1i)T2 1 + (-2.65 + 2.22i)T + (10.2 - 58.1i)T^{2}
61 1+(1.870.684i)T+(46.739.2i)T2 1 + (1.87 - 0.684i)T + (46.7 - 39.2i)T^{2}
67 1+(1.387.87i)T+(62.9+22.9i)T2 1 + (-1.38 - 7.87i)T + (-62.9 + 22.9i)T^{2}
71 1+(5.19+9i)T+(35.5+61.4i)T2 1 + (5.19 + 9i)T + (-35.5 + 61.4i)T^{2}
73 1+(11.73i)T+(36.563.2i)T2 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2}
79 1+(0.1730.984i)T+(74.227.0i)T2 1 + (0.173 - 0.984i)T + (-74.2 - 27.0i)T^{2}
83 1+(1.20+6.82i)T+(77.928.3i)T2 1 + (-1.20 + 6.82i)T + (-77.9 - 28.3i)T^{2}
89 1+(5.199i)T+(44.577.0i)T2 1 + (5.19 - 9i)T + (-44.5 - 77.0i)T^{2}
97 1+(13.010.9i)T+(16.8+95.5i)T2 1 + (-13.0 - 10.9i)T + (16.8 + 95.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.18700722054856216514550724547, −9.277425558064261322990905750510, −8.876465974020775582839104507821, −7.51873973536084641363063118434, −6.37868333126960020429288477545, −5.25060921636549554577470820489, −4.55973426849479449646016263257, −3.24614602853304289953305633151, −2.04163807764496035973278188877, −1.19475357274974093344576100748, 2.02264235311953138203832965823, 3.03874877494723370325247381901, 4.87262714758576893241418265315, 5.55511068883109287679616244150, 6.25121445900939175952682249904, 7.17643415295584154777043335855, 7.77910628578581401433833208507, 8.797693011515744597603713072820, 9.946108894841672447181167750410, 10.61249588407867013252312480020

Graph of the ZZ-function along the critical line