L(s) = 1 | + (−0.426 + 2.42i)2-s + (−3.79 − 1.38i)4-s + (−2.35 + 1.97i)5-s + (2.49 − 0.909i)7-s + (2.50 − 4.34i)8-s + (−3.78 − 6.55i)10-s + (−2.63 − 2.20i)11-s + (−0.580 − 3.29i)13-s + (1.13 + 6.43i)14-s + (3.25 + 2.72i)16-s + (−1.28 − 2.22i)17-s + (1.04 − 1.81i)19-s + (11.6 − 4.25i)20-s + (6.46 − 5.42i)22-s + (−0.502 − 0.182i)23-s + ⋯ |
L(s) = 1 | + (−0.301 + 1.71i)2-s + (−1.89 − 0.691i)4-s + (−1.05 + 0.885i)5-s + (0.944 − 0.343i)7-s + (0.886 − 1.53i)8-s + (−1.19 − 2.07i)10-s + (−0.793 − 0.665i)11-s + (−0.161 − 0.913i)13-s + (0.303 + 1.71i)14-s + (0.813 + 0.682i)16-s + (−0.311 − 0.540i)17-s + (0.240 − 0.416i)19-s + (2.61 − 0.951i)20-s + (1.37 − 1.15i)22-s + (−0.104 − 0.0381i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.993−0.116i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.993−0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.993−0.116i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.993−0.116i)
|
Particular Values
L(1) |
≈ |
0.488638+0.0284599i |
L(21) |
≈ |
0.488638+0.0284599i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.426−2.42i)T+(−1.87−0.684i)T2 |
| 5 | 1+(2.35−1.97i)T+(0.868−4.92i)T2 |
| 7 | 1+(−2.49+0.909i)T+(5.36−4.49i)T2 |
| 11 | 1+(2.63+2.20i)T+(1.91+10.8i)T2 |
| 13 | 1+(0.580+3.29i)T+(−12.2+4.44i)T2 |
| 17 | 1+(1.28+2.22i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.04+1.81i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.502+0.182i)T+(17.6+14.7i)T2 |
| 29 | 1+(−0.439+2.49i)T+(−27.2−9.91i)T2 |
| 31 | 1+(7.24+2.63i)T+(23.7+19.9i)T2 |
| 37 | 1+(−5.14−8.91i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.848+4.81i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−2.10−1.76i)T+(7.46+42.3i)T2 |
| 47 | 1+(−5.31+1.93i)T+(36.0−30.2i)T2 |
| 53 | 1−6.42T+53T2 |
| 59 | 1+(−1.26+1.06i)T+(10.2−58.1i)T2 |
| 61 | 1+(13.5−4.91i)T+(46.7−39.2i)T2 |
| 67 | 1+(1.02+5.78i)T+(−62.9+22.9i)T2 |
| 71 | 1+(7.40+12.8i)T+(−35.5+61.4i)T2 |
| 73 | 1+(0.940−1.62i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.98+16.9i)T+(−74.2−27.0i)T2 |
| 83 | 1+(−0.689+3.90i)T+(−77.9−28.3i)T2 |
| 89 | 1+(2.54−4.41i)T+(−44.5−77.0i)T2 |
| 97 | 1+(8.14+6.83i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42162844681983859357660440416, −9.168683068546513891248598512946, −8.204276216775787799708805390260, −7.64828319490062083662020211608, −7.28317172309611311079116292360, −6.12546698689150273333907353153, −5.21103084414943631865309084208, −4.32397111431135198842834675649, −2.98110128860672980408828884439, −0.30044551073686893832044183833,
1.39821524699995410657806521834, 2.38866165982343432024543814065, 3.90126081637754393294400078378, 4.46204165922005192941877541063, 5.36472288442885385514698113824, 7.34060587679714591712096478936, 8.181595817088048681002437708343, 8.835768682873583936755351759222, 9.563181708580393455938539686548, 10.67070560273723737466581606802