L(s) = 1 | + (−1.62 + 1.36i)2-s + (0.436 − 2.47i)4-s + (1.94 − 0.708i)5-s + (0.841 + 4.77i)7-s + (0.547 + 0.949i)8-s + (−2.20 + 3.81i)10-s + (−3.89 − 1.41i)11-s + (−0.931 − 0.781i)13-s + (−7.89 − 6.62i)14-s + (2.53 + 0.924i)16-s + (−1.18 + 2.04i)17-s + (0.919 + 1.59i)19-s + (−0.904 − 5.13i)20-s + (8.28 − 3.01i)22-s + (−0.747 + 4.23i)23-s + ⋯ |
L(s) = 1 | + (−1.15 + 0.965i)2-s + (0.218 − 1.23i)4-s + (0.870 − 0.316i)5-s + (0.318 + 1.80i)7-s + (0.193 + 0.335i)8-s + (−0.695 + 1.20i)10-s + (−1.17 − 0.427i)11-s + (−0.258 − 0.216i)13-s + (−2.10 − 1.77i)14-s + (0.634 + 0.231i)16-s + (−0.286 + 0.496i)17-s + (0.210 + 0.365i)19-s + (−0.202 − 1.14i)20-s + (1.76 − 0.642i)22-s + (−0.155 + 0.883i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0377385 + 0.647945i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0377385 + 0.647945i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.62 - 1.36i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (-1.94 + 0.708i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.841 - 4.77i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (3.89 + 1.41i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (0.931 + 0.781i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.18 - 2.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.919 - 1.59i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.747 - 4.23i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-2.28 + 1.91i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.255 + 1.45i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (4.48 - 7.76i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.73 - 1.45i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-5.15 - 1.87i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.24 - 7.07i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 6.32T + 53T^{2} \) |
| 59 | \( 1 + (0.246 - 0.0896i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (0.773 + 4.38i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-3.16 - 2.65i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (1.54 - 2.67i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (6.38 + 11.0i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.48 + 2.92i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (6.47 - 5.43i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (8.48 + 14.6i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.80 - 1.74i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37666291627938600448051199947, −9.607367769169231515143703565430, −9.022561544791193190059808011700, −8.231265631056569464409791699684, −7.71623553710059514524835907024, −6.24060565356262178749155060105, −5.77136539848179671956095052659, −5.07050110358790078372625537769, −2.90446686712649650751191926120, −1.70149557297191593032543342730,
0.47482208794464278740935962647, 1.88612942088287916686372951353, 2.83170459323646686676324940354, 4.25041895048044688746810906203, 5.38354390184831735762426395815, 6.89556545176258099906813280677, 7.49153326810801626657855049981, 8.421933016176346380884952162050, 9.476830756582052017464804955929, 10.17592261836784970836961135286