Properties

Label 2-3e6-27.22-c1-0-4
Degree $2$
Conductor $729$
Sign $-0.993 - 0.116i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.62 + 1.36i)2-s + (0.436 − 2.47i)4-s + (1.94 − 0.708i)5-s + (0.841 + 4.77i)7-s + (0.547 + 0.949i)8-s + (−2.20 + 3.81i)10-s + (−3.89 − 1.41i)11-s + (−0.931 − 0.781i)13-s + (−7.89 − 6.62i)14-s + (2.53 + 0.924i)16-s + (−1.18 + 2.04i)17-s + (0.919 + 1.59i)19-s + (−0.904 − 5.13i)20-s + (8.28 − 3.01i)22-s + (−0.747 + 4.23i)23-s + ⋯
L(s)  = 1  + (−1.15 + 0.965i)2-s + (0.218 − 1.23i)4-s + (0.870 − 0.316i)5-s + (0.318 + 1.80i)7-s + (0.193 + 0.335i)8-s + (−0.695 + 1.20i)10-s + (−1.17 − 0.427i)11-s + (−0.258 − 0.216i)13-s + (−2.10 − 1.77i)14-s + (0.634 + 0.231i)16-s + (−0.286 + 0.496i)17-s + (0.210 + 0.365i)19-s + (−0.202 − 1.14i)20-s + (1.76 − 0.642i)22-s + (−0.155 + 0.883i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.993 - 0.116i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (325, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.993 - 0.116i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0377385 + 0.647945i\)
\(L(\frac12)\) \(\approx\) \(0.0377385 + 0.647945i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.62 - 1.36i)T + (0.347 - 1.96i)T^{2} \)
5 \( 1 + (-1.94 + 0.708i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (-0.841 - 4.77i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (3.89 + 1.41i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (0.931 + 0.781i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (1.18 - 2.04i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.919 - 1.59i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.747 - 4.23i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-2.28 + 1.91i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.255 + 1.45i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (4.48 - 7.76i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.73 - 1.45i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-5.15 - 1.87i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-1.24 - 7.07i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 6.32T + 53T^{2} \)
59 \( 1 + (0.246 - 0.0896i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.773 + 4.38i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-3.16 - 2.65i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (1.54 - 2.67i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (6.38 + 11.0i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-3.48 + 2.92i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (6.47 - 5.43i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (8.48 + 14.6i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-4.80 - 1.74i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37666291627938600448051199947, −9.607367769169231515143703565430, −9.022561544791193190059808011700, −8.231265631056569464409791699684, −7.71623553710059514524835907024, −6.24060565356262178749155060105, −5.77136539848179671956095052659, −5.07050110358790078372625537769, −2.90446686712649650751191926120, −1.70149557297191593032543342730, 0.47482208794464278740935962647, 1.88612942088287916686372951353, 2.83170459323646686676324940354, 4.25041895048044688746810906203, 5.38354390184831735762426395815, 6.89556545176258099906813280677, 7.49153326810801626657855049981, 8.421933016176346380884952162050, 9.476830756582052017464804955929, 10.17592261836784970836961135286

Graph of the $Z$-function along the critical line