L(s) = 1 | + (2.02 + 0.562i)2-s + (2.05 + 1.24i)4-s + (3.69 − 0.143i)5-s + (0.392 + 0.0613i)7-s + (0.582 + 0.617i)8-s + (7.55 + 1.78i)10-s + (−0.272 − 1.99i)11-s + (−0.138 + 0.202i)13-s + (0.758 + 0.344i)14-s + (−1.41 − 2.67i)16-s + (−3.38 + 1.69i)17-s + (0.121 + 2.08i)19-s + (7.78 + 4.29i)20-s + (0.572 − 4.18i)22-s + (−0.303 + 0.785i)23-s + ⋯ |
L(s) = 1 | + (1.42 + 0.397i)2-s + (1.02 + 0.621i)4-s + (1.65 − 0.0641i)5-s + (0.148 + 0.0231i)7-s + (0.206 + 0.218i)8-s + (2.38 + 0.565i)10-s + (−0.0821 − 0.601i)11-s + (−0.0385 + 0.0561i)13-s + (0.202 + 0.0921i)14-s + (−0.352 − 0.669i)16-s + (−0.820 + 0.411i)17-s + (0.0278 + 0.479i)19-s + (1.74 + 0.960i)20-s + (0.121 − 0.892i)22-s + (−0.0632 + 0.163i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.926−0.375i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.926−0.375i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.926−0.375i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.926−0.375i)
|
Particular Values
L(1) |
≈ |
3.88301+0.756902i |
L(21) |
≈ |
3.88301+0.756902i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−2.02−0.562i)T+(1.71+1.03i)T2 |
| 5 | 1+(−3.69+0.143i)T+(4.98−0.387i)T2 |
| 7 | 1+(−0.392−0.0613i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.272+1.99i)T+(−10.5+2.94i)T2 |
| 13 | 1+(0.138−0.202i)T+(−4.68−12.1i)T2 |
| 17 | 1+(3.38−1.69i)T+(10.1−13.6i)T2 |
| 19 | 1+(−0.121−2.08i)T+(−18.8+2.20i)T2 |
| 23 | 1+(0.303−0.785i)T+(−17.0−15.4i)T2 |
| 29 | 1+(6.13+4.38i)T+(9.38+27.4i)T2 |
| 31 | 1+(6.53−7.49i)T+(−4.19−30.7i)T2 |
| 37 | 1+(−1.20−1.61i)T+(−10.6+35.4i)T2 |
| 41 | 1+(−0.459+1.78i)T+(−35.8−19.8i)T2 |
| 43 | 1+(−7.48−6.79i)T+(4.16+42.7i)T2 |
| 47 | 1+(−7.84−8.98i)T+(−6.36+46.5i)T2 |
| 53 | 1+(−1.65+9.36i)T+(−49.8−18.1i)T2 |
| 59 | 1+(−2.24+0.916i)T+(42.1−41.3i)T2 |
| 61 | 1+(12.8−7.73i)T+(28.4−53.9i)T2 |
| 67 | 1+(4.14−2.96i)T+(21.6−63.3i)T2 |
| 71 | 1+(−1.59−5.32i)T+(−59.3+39.0i)T2 |
| 73 | 1+(−8.65+2.05i)T+(65.2−32.7i)T2 |
| 79 | 1+(−3.32+3.25i)T+(1.53−78.9i)T2 |
| 83 | 1+(2.33+9.08i)T+(−72.6+40.0i)T2 |
| 89 | 1+(−4.90+16.3i)T+(−74.3−48.9i)T2 |
| 97 | 1+(9.63+0.374i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56861560719803219490764562702, −9.536369841762595585086687511073, −8.879203722049512055722872049729, −7.51145493544754792606562922828, −6.41098670946179051403423577097, −5.88826706228066277372959826544, −5.23262074667289811195285505174, −4.17475104465701385220616251883, −2.96651396556955424227582158800, −1.82177277366703898019244369253,
1.93850500054828259775257784000, 2.54034867558937658111935805561, 3.93481047098660012093734474465, 4.99457764878144650965771630219, 5.61320356720926235889269350324, 6.42278651331975177589951303537, 7.37781466217035072600313520636, 9.025842852322310264889837333049, 9.474681546580762267896399423773, 10.69159912717008772031569053577