L(s) = 1 | + (1.39 + 0.387i)2-s + (0.0768 + 0.0463i)4-s + (−1.01 + 0.0395i)5-s + (−0.161 − 0.0252i)7-s + (−1.89 − 2.00i)8-s + (−1.43 − 0.340i)10-s + (−0.568 − 4.16i)11-s + (1.68 − 2.45i)13-s + (−0.215 − 0.0978i)14-s + (−1.94 − 3.69i)16-s + (6.87 − 3.45i)17-s + (0.307 + 5.27i)19-s + (−0.0802 − 0.0442i)20-s + (0.821 − 6.01i)22-s + (2.81 − 7.29i)23-s + ⋯ |
L(s) = 1 | + (0.984 + 0.274i)2-s + (0.0384 + 0.0231i)4-s + (−0.456 + 0.0176i)5-s + (−0.0611 − 0.00955i)7-s + (−0.669 − 0.710i)8-s + (−0.453 − 0.107i)10-s + (−0.171 − 1.25i)11-s + (0.467 − 0.682i)13-s + (−0.0575 − 0.0261i)14-s + (−0.486 − 0.922i)16-s + (1.66 − 0.837i)17-s + (0.0705 + 1.21i)19-s + (−0.0179 − 0.00989i)20-s + (0.175 − 1.28i)22-s + (0.587 − 1.52i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.382+0.923i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.382+0.923i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.382+0.923i)
|
Particular Values
L(1) |
≈ |
1.52152−1.01659i |
L(21) |
≈ |
1.52152−1.01659i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−1.39−0.387i)T+(1.71+1.03i)T2 |
| 5 | 1+(1.01−0.0395i)T+(4.98−0.387i)T2 |
| 7 | 1+(0.161+0.0252i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.568+4.16i)T+(−10.5+2.94i)T2 |
| 13 | 1+(−1.68+2.45i)T+(−4.68−12.1i)T2 |
| 17 | 1+(−6.87+3.45i)T+(10.1−13.6i)T2 |
| 19 | 1+(−0.307−5.27i)T+(−18.8+2.20i)T2 |
| 23 | 1+(−2.81+7.29i)T+(−17.0−15.4i)T2 |
| 29 | 1+(7.18+5.13i)T+(9.38+27.4i)T2 |
| 31 | 1+(−1.77+2.03i)T+(−4.19−30.7i)T2 |
| 37 | 1+(−2.96−3.98i)T+(−10.6+35.4i)T2 |
| 41 | 1+(2.73−10.6i)T+(−35.8−19.8i)T2 |
| 43 | 1+(−0.972−0.882i)T+(4.16+42.7i)T2 |
| 47 | 1+(−2.91−3.34i)T+(−6.36+46.5i)T2 |
| 53 | 1+(−1.30+7.41i)T+(−49.8−18.1i)T2 |
| 59 | 1+(9.14−3.73i)T+(42.1−41.3i)T2 |
| 61 | 1+(1.32−0.801i)T+(28.4−53.9i)T2 |
| 67 | 1+(−5.87+4.20i)T+(21.6−63.3i)T2 |
| 71 | 1+(−1.31−4.37i)T+(−59.3+39.0i)T2 |
| 73 | 1+(−3.87+0.917i)T+(65.2−32.7i)T2 |
| 79 | 1+(−7.95+7.79i)T+(1.53−78.9i)T2 |
| 83 | 1+(1.44+5.60i)T+(−72.6+40.0i)T2 |
| 89 | 1+(1.18−3.94i)T+(−74.3−48.9i)T2 |
| 97 | 1+(−5.41−0.210i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19910913804457871739731669769, −9.487058809234202230725161627078, −8.233597689359697838193374363911, −7.72673872844008847060560377860, −6.25635289252315335435782096163, −5.79616263188837531912883929683, −4.82951488644132654615014055388, −3.65481000968587599641851496279, −3.08088886309032962873278489311, −0.71874771632796074597455271387,
1.85376810605837827297434089825, 3.33699177958311045636544308563, 3.99251382032091112328097746318, 5.03868904857739685652059526244, 5.76460891890493635958046350864, 7.10378057057733846017757743154, 7.79553169119261579375753691252, 8.974816958701404967053824421163, 9.623410104325637713886003450827, 10.84200833677158942803713159316