L(s) = 1 | + (−0.450 − 0.125i)2-s + (−1.52 − 0.920i)4-s + (1.87 − 0.0727i)5-s + (−1.75 − 0.275i)7-s + (1.21 + 1.28i)8-s + (−0.852 − 0.202i)10-s + (−0.122 − 0.894i)11-s + (1.98 − 2.89i)13-s + (0.757 + 0.344i)14-s + (1.27 + 2.42i)16-s + (−1.35 + 0.678i)17-s + (−0.248 − 4.26i)19-s + (−2.92 − 1.61i)20-s + (−0.0570 + 0.417i)22-s + (−0.323 + 0.836i)23-s + ⋯ |
L(s) = 1 | + (−0.318 − 0.0885i)2-s + (−0.762 − 0.460i)4-s + (0.837 − 0.0325i)5-s + (−0.665 − 0.104i)7-s + (0.428 + 0.454i)8-s + (−0.269 − 0.0638i)10-s + (−0.0368 − 0.269i)11-s + (0.551 − 0.803i)13-s + (0.202 + 0.0920i)14-s + (0.319 + 0.605i)16-s + (−0.327 + 0.164i)17-s + (−0.0570 − 0.979i)19-s + (−0.654 − 0.360i)20-s + (−0.0121 + 0.0891i)22-s + (−0.0673 + 0.174i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(−0.430+0.902i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(−0.430+0.902i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
−0.430+0.902i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), −0.430+0.902i)
|
Particular Values
L(1) |
≈ |
0.457816−0.725657i |
L(21) |
≈ |
0.457816−0.725657i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.450+0.125i)T+(1.71+1.03i)T2 |
| 5 | 1+(−1.87+0.0727i)T+(4.98−0.387i)T2 |
| 7 | 1+(1.75+0.275i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.122+0.894i)T+(−10.5+2.94i)T2 |
| 13 | 1+(−1.98+2.89i)T+(−4.68−12.1i)T2 |
| 17 | 1+(1.35−0.678i)T+(10.1−13.6i)T2 |
| 19 | 1+(0.248+4.26i)T+(−18.8+2.20i)T2 |
| 23 | 1+(0.323−0.836i)T+(−17.0−15.4i)T2 |
| 29 | 1+(5.35+3.82i)T+(9.38+27.4i)T2 |
| 31 | 1+(−6.83+7.83i)T+(−4.19−30.7i)T2 |
| 37 | 1+(4.40+5.92i)T+(−10.6+35.4i)T2 |
| 41 | 1+(1.34−5.21i)T+(−35.8−19.8i)T2 |
| 43 | 1+(−2.48−2.25i)T+(4.16+42.7i)T2 |
| 47 | 1+(5.78+6.62i)T+(−6.36+46.5i)T2 |
| 53 | 1+(0.445−2.52i)T+(−49.8−18.1i)T2 |
| 59 | 1+(−7.15+2.92i)T+(42.1−41.3i)T2 |
| 61 | 1+(4.04−2.44i)T+(28.4−53.9i)T2 |
| 67 | 1+(−4.78+3.41i)T+(21.6−63.3i)T2 |
| 71 | 1+(4.36+14.5i)T+(−59.3+39.0i)T2 |
| 73 | 1+(4.63−1.09i)T+(65.2−32.7i)T2 |
| 79 | 1+(−5.00+4.90i)T+(1.53−78.9i)T2 |
| 83 | 1+(1.78+6.91i)T+(−72.6+40.0i)T2 |
| 89 | 1+(1.01−3.39i)T+(−74.3−48.9i)T2 |
| 97 | 1+(4.63+0.179i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.921706562628135931617694322962, −9.444696411047764457895258948354, −8.609821165136678093699215287945, −7.69612108127159547572872552957, −6.29875880663135150424207117240, −5.78195507095716785284494746646, −4.72598917495373134208309255061, −3.51992837045701036476445584282, −2.08691606947212474387568509216, −0.51013883769395071071854490527,
1.62390830457342815034613998165, 3.17673084279204489929598248573, 4.20151715298541248980610021248, 5.30739414734265753875624108047, 6.36007949133018508736444189744, 7.13688619283513833930512235396, 8.355030345952157493722511716281, 8.958274681327156904561569303220, 9.817567431390145135755999568286, 10.23712833583706387094930274684