L(s) = 1 | + (0.129 + 0.0359i)2-s + (−1.69 − 1.02i)4-s + (2.51 − 0.0976i)5-s + (4.08 + 0.638i)7-s + (−0.366 − 0.388i)8-s + (0.328 + 0.0778i)10-s + (−0.654 − 4.78i)11-s + (−0.189 + 0.276i)13-s + (0.504 + 0.229i)14-s + (1.81 + 3.44i)16-s + (−1.56 + 0.787i)17-s + (0.123 + 2.12i)19-s + (−4.36 − 2.41i)20-s + (0.0877 − 0.642i)22-s + (0.620 − 1.60i)23-s + ⋯ |
L(s) = 1 | + (0.0913 + 0.0254i)2-s + (−0.848 − 0.512i)4-s + (1.12 − 0.0436i)5-s + (1.54 + 0.241i)7-s + (−0.129 − 0.137i)8-s + (0.103 + 0.0246i)10-s + (−0.197 − 1.44i)11-s + (−0.0526 + 0.0767i)13-s + (0.134 + 0.0613i)14-s + (0.453 + 0.860i)16-s + (−0.380 + 0.190i)17-s + (0.0283 + 0.487i)19-s + (−0.977 − 0.539i)20-s + (0.0186 − 0.136i)22-s + (0.129 − 0.335i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.774+0.632i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.774+0.632i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.774+0.632i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.774+0.632i)
|
Particular Values
L(1) |
≈ |
1.71859−0.612069i |
L(21) |
≈ |
1.71859−0.612069i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.129−0.0359i)T+(1.71+1.03i)T2 |
| 5 | 1+(−2.51+0.0976i)T+(4.98−0.387i)T2 |
| 7 | 1+(−4.08−0.638i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.654+4.78i)T+(−10.5+2.94i)T2 |
| 13 | 1+(0.189−0.276i)T+(−4.68−12.1i)T2 |
| 17 | 1+(1.56−0.787i)T+(10.1−13.6i)T2 |
| 19 | 1+(−0.123−2.12i)T+(−18.8+2.20i)T2 |
| 23 | 1+(−0.620+1.60i)T+(−17.0−15.4i)T2 |
| 29 | 1+(−0.238−0.170i)T+(9.38+27.4i)T2 |
| 31 | 1+(−5.27+6.04i)T+(−4.19−30.7i)T2 |
| 37 | 1+(−6.18−8.31i)T+(−10.6+35.4i)T2 |
| 41 | 1+(−1.90+7.40i)T+(−35.8−19.8i)T2 |
| 43 | 1+(0.684+0.620i)T+(4.16+42.7i)T2 |
| 47 | 1+(4.38+5.02i)T+(−6.36+46.5i)T2 |
| 53 | 1+(−2.13+12.1i)T+(−49.8−18.1i)T2 |
| 59 | 1+(−1.52+0.623i)T+(42.1−41.3i)T2 |
| 61 | 1+(0.475−0.287i)T+(28.4−53.9i)T2 |
| 67 | 1+(−6.22+4.45i)T+(21.6−63.3i)T2 |
| 71 | 1+(−3.03−10.1i)T+(−59.3+39.0i)T2 |
| 73 | 1+(10.8−2.56i)T+(65.2−32.7i)T2 |
| 79 | 1+(11.3−11.1i)T+(1.53−78.9i)T2 |
| 83 | 1+(−3.20−12.4i)T+(−72.6+40.0i)T2 |
| 89 | 1+(2.10−7.03i)T+(−74.3−48.9i)T2 |
| 97 | 1+(−0.615−0.0238i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22404243816809609994246016874, −9.486326382223987648672467377861, −8.404196976016670643724120888904, −8.226527984912673572930521328114, −6.44936482129508131903783035868, −5.62919584862181432307008890293, −5.09405448190912865738837788852, −4.00400555150647635157867434122, −2.32352429063195538382966788947, −1.11068006733504424329624811257,
1.53510033750068317411054984549, 2.68778828665969101427304520475, 4.50665261944917320018404642480, 4.73839279605340879924598354195, 5.83708367643159024824743556239, 7.22306781207494882375331179824, 7.87260314373811646589038507867, 8.871200675633341326579994674156, 9.584635116728913271160218149471, 10.34384516610544995604965773426