L(s) = 1 | + (−1.16 − 0.323i)2-s + (−0.467 − 0.282i)4-s + (1.06 − 0.0411i)5-s + (−5.09 − 0.796i)7-s + (2.10 + 2.23i)8-s + (−1.24 − 0.295i)10-s + (−0.460 − 3.36i)11-s + (1.07 − 1.56i)13-s + (5.65 + 2.57i)14-s + (−1.21 − 2.30i)16-s + (1.45 − 0.730i)17-s + (0.362 + 6.23i)19-s + (−0.507 − 0.279i)20-s + (−0.554 + 4.06i)22-s + (−1.67 + 4.33i)23-s + ⋯ |
L(s) = 1 | + (−0.821 − 0.228i)2-s + (−0.233 − 0.141i)4-s + (0.474 − 0.0183i)5-s + (−1.92 − 0.301i)7-s + (0.744 + 0.789i)8-s + (−0.393 − 0.0932i)10-s + (−0.138 − 1.01i)11-s + (0.298 − 0.434i)13-s + (1.51 + 0.687i)14-s + (−0.304 − 0.577i)16-s + (0.353 − 0.177i)17-s + (0.0832 + 1.42i)19-s + (−0.113 − 0.0625i)20-s + (−0.118 + 0.865i)22-s + (−0.349 + 0.903i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.0820−0.996i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.0820−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.0820−0.996i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.0820−0.996i)
|
Particular Values
L(1) |
≈ |
0.243904+0.224652i |
L(21) |
≈ |
0.243904+0.224652i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(1.16+0.323i)T+(1.71+1.03i)T2 |
| 5 | 1+(−1.06+0.0411i)T+(4.98−0.387i)T2 |
| 7 | 1+(5.09+0.796i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.460+3.36i)T+(−10.5+2.94i)T2 |
| 13 | 1+(−1.07+1.56i)T+(−4.68−12.1i)T2 |
| 17 | 1+(−1.45+0.730i)T+(10.1−13.6i)T2 |
| 19 | 1+(−0.362−6.23i)T+(−18.8+2.20i)T2 |
| 23 | 1+(1.67−4.33i)T+(−17.0−15.4i)T2 |
| 29 | 1+(−5.05−3.61i)T+(9.38+27.4i)T2 |
| 31 | 1+(3.36−3.85i)T+(−4.19−30.7i)T2 |
| 37 | 1+(3.97+5.33i)T+(−10.6+35.4i)T2 |
| 41 | 1+(1.40−5.44i)T+(−35.8−19.8i)T2 |
| 43 | 1+(−3.72−3.38i)T+(4.16+42.7i)T2 |
| 47 | 1+(−3.71−4.25i)T+(−6.36+46.5i)T2 |
| 53 | 1+(−0.178+1.01i)T+(−49.8−18.1i)T2 |
| 59 | 1+(7.85−3.20i)T+(42.1−41.3i)T2 |
| 61 | 1+(4.86−2.93i)T+(28.4−53.9i)T2 |
| 67 | 1+(2.72−1.94i)T+(21.6−63.3i)T2 |
| 71 | 1+(−4.36−14.5i)T+(−59.3+39.0i)T2 |
| 73 | 1+(−3.76+0.892i)T+(65.2−32.7i)T2 |
| 79 | 1+(9.19−9.01i)T+(1.53−78.9i)T2 |
| 83 | 1+(−1.47−5.72i)T+(−72.6+40.0i)T2 |
| 89 | 1+(−0.365+1.22i)T+(−74.3−48.9i)T2 |
| 97 | 1+(11.0+0.427i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25613417754133180412057178969, −9.811983599810337850689215785022, −9.113345466733858899518256293408, −8.234342361197484694247247797015, −7.25599054507636846448840325335, −5.99865426731045609383599750252, −5.60801381013410491635408600039, −3.85269586268414010317539771041, −2.97545345019189576065131419604, −1.23495226827746904417891576440,
0.24982651994966467906470292472, 2.28477357379281491957153827626, 3.56729433612705074216355868005, 4.65889441775433967583027874118, 6.09631298527584732708165810565, 6.75377252747560566270518308139, 7.55033478674608381916220183741, 8.807711618830692745738167375321, 9.316665869936017382668274338645, 9.964017395766527171891005219170