L(s) = 1 | − 1.57·2-s + 0.491·4-s + 1.67·5-s + 2.77·7-s + 2.38·8-s − 2.64·10-s − 4.15·11-s + 6.87·13-s − 4.38·14-s − 4.74·16-s + 0.976·17-s + 2.68·19-s + 0.824·20-s + 6.55·22-s + 1.61·23-s − 2.18·25-s − 10.8·26-s + 1.36·28-s − 8.22·29-s + 1.04·31-s + 2.72·32-s − 1.54·34-s + 4.66·35-s − 1.30·37-s − 4.23·38-s + 3.99·40-s − 4.84·41-s + ⋯ |
L(s) = 1 | − 1.11·2-s + 0.245·4-s + 0.750·5-s + 1.05·7-s + 0.841·8-s − 0.837·10-s − 1.25·11-s + 1.90·13-s − 1.17·14-s − 1.18·16-s + 0.236·17-s + 0.616·19-s + 0.184·20-s + 1.39·22-s + 0.336·23-s − 0.436·25-s − 2.12·26-s + 0.258·28-s − 1.52·29-s + 0.187·31-s + 0.481·32-s − 0.264·34-s + 0.788·35-s − 0.215·37-s − 0.687·38-s + 0.631·40-s − 0.757·41-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.059222498 |
L(21) |
≈ |
1.059222498 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+1.57T+2T2 |
| 5 | 1−1.67T+5T2 |
| 7 | 1−2.77T+7T2 |
| 11 | 1+4.15T+11T2 |
| 13 | 1−6.87T+13T2 |
| 17 | 1−0.976T+17T2 |
| 19 | 1−2.68T+19T2 |
| 23 | 1−1.61T+23T2 |
| 29 | 1+8.22T+29T2 |
| 31 | 1−1.04T+31T2 |
| 37 | 1+1.30T+37T2 |
| 41 | 1+4.84T+41T2 |
| 43 | 1−9.84T+43T2 |
| 47 | 1−12.4T+47T2 |
| 53 | 1−7.34T+53T2 |
| 59 | 1−9.05T+59T2 |
| 61 | 1+1.28T+61T2 |
| 67 | 1+4.64T+67T2 |
| 71 | 1−5.62T+71T2 |
| 73 | 1+4.56T+73T2 |
| 79 | 1−4.65T+79T2 |
| 83 | 1−5.76T+83T2 |
| 89 | 1−4.54T+89T2 |
| 97 | 1−8.57T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45932299482688333501306776339, −9.411206781486181995646817152710, −8.719342320152038539880779646738, −7.983455581894657076721036042878, −7.31838791955465934951377609864, −5.86091592589307152553643596876, −5.19378731119956203054696392547, −3.87763835950422610210172208167, −2.17405774737837463375929275576, −1.11744055592954130864401262748,
1.11744055592954130864401262748, 2.17405774737837463375929275576, 3.87763835950422610210172208167, 5.19378731119956203054696392547, 5.86091592589307152553643596876, 7.31838791955465934951377609864, 7.983455581894657076721036042878, 8.719342320152038539880779646738, 9.411206781486181995646817152710, 10.45932299482688333501306776339