L(s) = 1 | − 0.415·2-s − 1.82·4-s + 2.21·5-s − 1.31·7-s + 1.59·8-s − 0.920·10-s − 5.21·11-s − 0.0180·13-s + 0.548·14-s + 2.99·16-s − 3.13·17-s + 0.417·19-s − 4.04·20-s + 2.16·22-s − 1.03·23-s − 0.0929·25-s + 0.00750·26-s + 2.41·28-s − 7.80·29-s + 3.72·31-s − 4.42·32-s + 1.30·34-s − 2.92·35-s + 4.42·37-s − 0.173·38-s + 3.52·40-s − 3.67·41-s + ⋯ |
L(s) = 1 | − 0.293·2-s − 0.913·4-s + 0.990·5-s − 0.498·7-s + 0.562·8-s − 0.291·10-s − 1.57·11-s − 0.00500·13-s + 0.146·14-s + 0.748·16-s − 0.759·17-s + 0.0957·19-s − 0.905·20-s + 0.461·22-s − 0.215·23-s − 0.0185·25-s + 0.00147·26-s + 0.455·28-s − 1.44·29-s + 0.669·31-s − 0.782·32-s + 0.223·34-s − 0.494·35-s + 0.727·37-s − 0.0281·38-s + 0.556·40-s − 0.573·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + 0.415T + 2T^{2} \) |
| 5 | \( 1 - 2.21T + 5T^{2} \) |
| 7 | \( 1 + 1.31T + 7T^{2} \) |
| 11 | \( 1 + 5.21T + 11T^{2} \) |
| 13 | \( 1 + 0.0180T + 13T^{2} \) |
| 17 | \( 1 + 3.13T + 17T^{2} \) |
| 19 | \( 1 - 0.417T + 19T^{2} \) |
| 23 | \( 1 + 1.03T + 23T^{2} \) |
| 29 | \( 1 + 7.80T + 29T^{2} \) |
| 31 | \( 1 - 3.72T + 31T^{2} \) |
| 37 | \( 1 - 4.42T + 37T^{2} \) |
| 41 | \( 1 + 3.67T + 41T^{2} \) |
| 43 | \( 1 + 8.30T + 43T^{2} \) |
| 47 | \( 1 + 7.09T + 47T^{2} \) |
| 53 | \( 1 + 1.30T + 53T^{2} \) |
| 59 | \( 1 + 3.70T + 59T^{2} \) |
| 61 | \( 1 - 6.91T + 61T^{2} \) |
| 67 | \( 1 + 11.0T + 67T^{2} \) |
| 71 | \( 1 + 6.08T + 71T^{2} \) |
| 73 | \( 1 + 0.546T + 73T^{2} \) |
| 79 | \( 1 - 0.489T + 79T^{2} \) |
| 83 | \( 1 - 4.61T + 83T^{2} \) |
| 89 | \( 1 + 3.37T + 89T^{2} \) |
| 97 | \( 1 - 9.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.940461865239414781007964156773, −9.261173834202927770010241126741, −8.346106829826546679404691216687, −7.54203482616040937669375229235, −6.28681007110405631093527253163, −5.42684227220377653042652778140, −4.63087450589062558570813055946, −3.23478917790178859565313368717, −1.94560220139732442041610272342, 0,
1.94560220139732442041610272342, 3.23478917790178859565313368717, 4.63087450589062558570813055946, 5.42684227220377653042652778140, 6.28681007110405631093527253163, 7.54203482616040937669375229235, 8.346106829826546679404691216687, 9.261173834202927770010241126741, 9.940461865239414781007964156773