L(s) = 1 | − 0.415·2-s − 1.82·4-s + 2.21·5-s − 1.31·7-s + 1.59·8-s − 0.920·10-s − 5.21·11-s − 0.0180·13-s + 0.548·14-s + 2.99·16-s − 3.13·17-s + 0.417·19-s − 4.04·20-s + 2.16·22-s − 1.03·23-s − 0.0929·25-s + 0.00750·26-s + 2.41·28-s − 7.80·29-s + 3.72·31-s − 4.42·32-s + 1.30·34-s − 2.92·35-s + 4.42·37-s − 0.173·38-s + 3.52·40-s − 3.67·41-s + ⋯ |
L(s) = 1 | − 0.293·2-s − 0.913·4-s + 0.990·5-s − 0.498·7-s + 0.562·8-s − 0.291·10-s − 1.57·11-s − 0.00500·13-s + 0.146·14-s + 0.748·16-s − 0.759·17-s + 0.0957·19-s − 0.905·20-s + 0.461·22-s − 0.215·23-s − 0.0185·25-s + 0.00147·26-s + 0.455·28-s − 1.44·29-s + 0.669·31-s − 0.782·32-s + 0.223·34-s − 0.494·35-s + 0.727·37-s − 0.0281·38-s + 0.556·40-s − 0.573·41-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+0.415T+2T2 |
| 5 | 1−2.21T+5T2 |
| 7 | 1+1.31T+7T2 |
| 11 | 1+5.21T+11T2 |
| 13 | 1+0.0180T+13T2 |
| 17 | 1+3.13T+17T2 |
| 19 | 1−0.417T+19T2 |
| 23 | 1+1.03T+23T2 |
| 29 | 1+7.80T+29T2 |
| 31 | 1−3.72T+31T2 |
| 37 | 1−4.42T+37T2 |
| 41 | 1+3.67T+41T2 |
| 43 | 1+8.30T+43T2 |
| 47 | 1+7.09T+47T2 |
| 53 | 1+1.30T+53T2 |
| 59 | 1+3.70T+59T2 |
| 61 | 1−6.91T+61T2 |
| 67 | 1+11.0T+67T2 |
| 71 | 1+6.08T+71T2 |
| 73 | 1+0.546T+73T2 |
| 79 | 1−0.489T+79T2 |
| 83 | 1−4.61T+83T2 |
| 89 | 1+3.37T+89T2 |
| 97 | 1−9.94T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.940461865239414781007964156773, −9.261173834202927770010241126741, −8.346106829826546679404691216687, −7.54203482616040937669375229235, −6.28681007110405631093527253163, −5.42684227220377653042652778140, −4.63087450589062558570813055946, −3.23478917790178859565313368717, −1.94560220139732442041610272342, 0,
1.94560220139732442041610272342, 3.23478917790178859565313368717, 4.63087450589062558570813055946, 5.42684227220377653042652778140, 6.28681007110405631093527253163, 7.54203482616040937669375229235, 8.346106829826546679404691216687, 9.261173834202927770010241126741, 9.940461865239414781007964156773