L(s) = 1 | + 0.172·2-s − 1.97·4-s − 3.73·5-s + 3.03·7-s − 0.686·8-s − 0.646·10-s − 2.49·11-s − 0.765·13-s + 0.524·14-s + 3.82·16-s + 4.62·17-s − 0.611·19-s + 7.36·20-s − 0.431·22-s + 6.52·23-s + 8.96·25-s − 0.132·26-s − 5.97·28-s − 6.55·29-s + 6.55·31-s + 2.03·32-s + 0.799·34-s − 11.3·35-s + 4.95·37-s − 0.105·38-s + 2.56·40-s + 5.26·41-s + ⋯ |
L(s) = 1 | + 0.122·2-s − 0.985·4-s − 1.67·5-s + 1.14·7-s − 0.242·8-s − 0.204·10-s − 0.751·11-s − 0.212·13-s + 0.140·14-s + 0.955·16-s + 1.12·17-s − 0.140·19-s + 1.64·20-s − 0.0918·22-s + 1.36·23-s + 1.79·25-s − 0.0259·26-s − 1.12·28-s − 1.21·29-s + 1.17·31-s + 0.359·32-s + 0.137·34-s − 1.91·35-s + 0.815·37-s − 0.0171·38-s + 0.405·40-s + 0.821·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9627861164\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9627861164\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 - 0.172T + 2T^{2} \) |
| 5 | \( 1 + 3.73T + 5T^{2} \) |
| 7 | \( 1 - 3.03T + 7T^{2} \) |
| 11 | \( 1 + 2.49T + 11T^{2} \) |
| 13 | \( 1 + 0.765T + 13T^{2} \) |
| 17 | \( 1 - 4.62T + 17T^{2} \) |
| 19 | \( 1 + 0.611T + 19T^{2} \) |
| 23 | \( 1 - 6.52T + 23T^{2} \) |
| 29 | \( 1 + 6.55T + 29T^{2} \) |
| 31 | \( 1 - 6.55T + 31T^{2} \) |
| 37 | \( 1 - 4.95T + 37T^{2} \) |
| 41 | \( 1 - 5.26T + 41T^{2} \) |
| 43 | \( 1 - 5.57T + 43T^{2} \) |
| 47 | \( 1 - 1.10T + 47T^{2} \) |
| 53 | \( 1 - 8.84T + 53T^{2} \) |
| 59 | \( 1 + 11.8T + 59T^{2} \) |
| 61 | \( 1 - 8.18T + 61T^{2} \) |
| 67 | \( 1 + 1.21T + 67T^{2} \) |
| 71 | \( 1 + 4.91T + 71T^{2} \) |
| 73 | \( 1 - 4.29T + 73T^{2} \) |
| 79 | \( 1 + 11.7T + 79T^{2} \) |
| 83 | \( 1 - 9.01T + 83T^{2} \) |
| 89 | \( 1 - 7.53T + 89T^{2} \) |
| 97 | \( 1 + 0.948T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57484870106314574914296963722, −9.399411302239532608072998550108, −8.441906588099580354933921432222, −7.86624929305702151148931412361, −7.35368398273338432605387539775, −5.58476695851257777719103905831, −4.76568339855758623637334294215, −4.10284203300566520078979411695, −3.01302537208609964447957061125, −0.829257742670493852461042322898,
0.829257742670493852461042322898, 3.01302537208609964447957061125, 4.10284203300566520078979411695, 4.76568339855758623637334294215, 5.58476695851257777719103905831, 7.35368398273338432605387539775, 7.86624929305702151148931412361, 8.441906588099580354933921432222, 9.399411302239532608072998550108, 10.57484870106314574914296963722