L(s) = 1 | + 0.172·2-s − 1.97·4-s − 3.73·5-s + 3.03·7-s − 0.686·8-s − 0.646·10-s − 2.49·11-s − 0.765·13-s + 0.524·14-s + 3.82·16-s + 4.62·17-s − 0.611·19-s + 7.36·20-s − 0.431·22-s + 6.52·23-s + 8.96·25-s − 0.132·26-s − 5.97·28-s − 6.55·29-s + 6.55·31-s + 2.03·32-s + 0.799·34-s − 11.3·35-s + 4.95·37-s − 0.105·38-s + 2.56·40-s + 5.26·41-s + ⋯ |
L(s) = 1 | + 0.122·2-s − 0.985·4-s − 1.67·5-s + 1.14·7-s − 0.242·8-s − 0.204·10-s − 0.751·11-s − 0.212·13-s + 0.140·14-s + 0.955·16-s + 1.12·17-s − 0.140·19-s + 1.64·20-s − 0.0918·22-s + 1.36·23-s + 1.79·25-s − 0.0259·26-s − 1.12·28-s − 1.21·29-s + 1.17·31-s + 0.359·32-s + 0.137·34-s − 1.91·35-s + 0.815·37-s − 0.0171·38-s + 0.405·40-s + 0.821·41-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9627861164 |
L(21) |
≈ |
0.9627861164 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1−0.172T+2T2 |
| 5 | 1+3.73T+5T2 |
| 7 | 1−3.03T+7T2 |
| 11 | 1+2.49T+11T2 |
| 13 | 1+0.765T+13T2 |
| 17 | 1−4.62T+17T2 |
| 19 | 1+0.611T+19T2 |
| 23 | 1−6.52T+23T2 |
| 29 | 1+6.55T+29T2 |
| 31 | 1−6.55T+31T2 |
| 37 | 1−4.95T+37T2 |
| 41 | 1−5.26T+41T2 |
| 43 | 1−5.57T+43T2 |
| 47 | 1−1.10T+47T2 |
| 53 | 1−8.84T+53T2 |
| 59 | 1+11.8T+59T2 |
| 61 | 1−8.18T+61T2 |
| 67 | 1+1.21T+67T2 |
| 71 | 1+4.91T+71T2 |
| 73 | 1−4.29T+73T2 |
| 79 | 1+11.7T+79T2 |
| 83 | 1−9.01T+83T2 |
| 89 | 1−7.53T+89T2 |
| 97 | 1+0.948T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57484870106314574914296963722, −9.399411302239532608072998550108, −8.441906588099580354933921432222, −7.86624929305702151148931412361, −7.35368398273338432605387539775, −5.58476695851257777719103905831, −4.76568339855758623637334294215, −4.10284203300566520078979411695, −3.01302537208609964447957061125, −0.829257742670493852461042322898,
0.829257742670493852461042322898, 3.01302537208609964447957061125, 4.10284203300566520078979411695, 4.76568339855758623637334294215, 5.58476695851257777719103905831, 7.35368398273338432605387539775, 7.86624929305702151148931412361, 8.441906588099580354933921432222, 9.399411302239532608072998550108, 10.57484870106314574914296963722