Properties

Label 2-3e5-9.7-c1-0-8
Degree 22
Conductor 243243
Sign 0.766+0.642i0.766 + 0.642i
Analytic cond. 1.940361.94036
Root an. cond. 1.392961.39296
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 1.5i)2-s + (−0.5 − 0.866i)4-s + (−1.73 − 3i)5-s + (0.5 − 0.866i)7-s − 1.73·8-s + 6·10-s + (1.73 − 3i)11-s + (−2.5 − 4.33i)13-s + (0.866 + 1.5i)14-s + (2.49 − 4.33i)16-s − 19-s + (−1.73 + 3i)20-s + (3 + 5.19i)22-s + (3.46 + 6i)23-s + (−3.5 + 6.06i)25-s + 8.66·26-s + ⋯
L(s)  = 1  + (−0.612 + 1.06i)2-s + (−0.250 − 0.433i)4-s + (−0.774 − 1.34i)5-s + (0.188 − 0.327i)7-s − 0.612·8-s + 1.89·10-s + (0.522 − 0.904i)11-s + (−0.693 − 1.20i)13-s + (0.231 + 0.400i)14-s + (0.624 − 1.08i)16-s − 0.229·19-s + (−0.387 + 0.670i)20-s + (0.639 + 1.10i)22-s + (0.722 + 1.25i)23-s + (−0.700 + 1.21i)25-s + 1.69·26-s + ⋯

Functional equation

Λ(s)=(243s/2ΓC(s)L(s)=((0.766+0.642i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(243s/2ΓC(s+1/2)L(s)=((0.766+0.642i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 243243    =    353^{5}
Sign: 0.766+0.642i0.766 + 0.642i
Analytic conductor: 1.940361.94036
Root analytic conductor: 1.392961.39296
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ243(163,)\chi_{243} (163, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 243, ( :1/2), 0.766+0.642i)(2,\ 243,\ (\ :1/2),\ 0.766 + 0.642i)

Particular Values

L(1)L(1) \approx 0.5983070.217766i0.598307 - 0.217766i
L(12)L(\frac12) \approx 0.5983070.217766i0.598307 - 0.217766i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
good2 1+(0.8661.5i)T+(11.73i)T2 1 + (0.866 - 1.5i)T + (-1 - 1.73i)T^{2}
5 1+(1.73+3i)T+(2.5+4.33i)T2 1 + (1.73 + 3i)T + (-2.5 + 4.33i)T^{2}
7 1+(0.5+0.866i)T+(3.56.06i)T2 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2}
11 1+(1.73+3i)T+(5.59.52i)T2 1 + (-1.73 + 3i)T + (-5.5 - 9.52i)T^{2}
13 1+(2.5+4.33i)T+(6.5+11.2i)T2 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2}
17 1+17T2 1 + 17T^{2}
19 1+T+19T2 1 + T + 19T^{2}
23 1+(3.466i)T+(11.5+19.9i)T2 1 + (-3.46 - 6i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.73+3i)T+(14.525.1i)T2 1 + (-1.73 + 3i)T + (-14.5 - 25.1i)T^{2}
31 1+(2.5+4.33i)T+(15.5+26.8i)T2 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2}
37 1+T+37T2 1 + T + 37T^{2}
41 1+(1.73+3i)T+(20.5+35.5i)T2 1 + (1.73 + 3i)T + (-20.5 + 35.5i)T^{2}
43 1+(0.5+0.866i)T+(21.537.2i)T2 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2}
47 1+(1.73+3i)T+(23.540.7i)T2 1 + (-1.73 + 3i)T + (-23.5 - 40.7i)T^{2}
53 1+10.3T+53T2 1 + 10.3T + 53T^{2}
59 1+(1.73+3i)T+(29.5+51.0i)T2 1 + (1.73 + 3i)T + (-29.5 + 51.0i)T^{2}
61 1+(11.73i)T+(30.552.8i)T2 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2}
67 1+(4+6.92i)T+(33.5+58.0i)T2 1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2}
71 110.3T+71T2 1 - 10.3T + 71T^{2}
73 12T+73T2 1 - 2T + 73T^{2}
79 1+(0.5+0.866i)T+(39.568.4i)T2 1 + (-0.5 + 0.866i)T + (-39.5 - 68.4i)T^{2}
83 1+(3.466i)T+(41.571.8i)T2 1 + (3.46 - 6i)T + (-41.5 - 71.8i)T^{2}
89 110.3T+89T2 1 - 10.3T + 89T^{2}
97 1+(8.514.7i)T+(48.584.0i)T2 1 + (8.5 - 14.7i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.07782790986596153554552766680, −11.11878037601829153735185745971, −9.616641942505299831624556621184, −8.789323586165361484461357426998, −8.006903235802678557635785973711, −7.39680556639963975985484355977, −5.93982797556827404509640005013, −4.96584975226237627380466797561, −3.49625084704881218547416639341, −0.62500319074072478064120732846, 2.03954259792561744116669193558, 3.15987605895427165078636724539, 4.52016100892549047316912626960, 6.51539851266405452569228860040, 7.18437291149639858644195074932, 8.608723514576209367941208707134, 9.547148113734412827076121675315, 10.48618113559989277544079735893, 11.18055426766215539498024103686, 11.94420156713270657040853268969

Graph of the ZZ-function along the critical line