| L(s) = 1 | + 30.7i·2-s − 691.·4-s + 787. i·5-s + 3.93e3·7-s − 1.34e4i·8-s − 2.42e4·10-s − 6.82e3i·11-s − 2.03e4·13-s + 1.21e5i·14-s + 2.35e5·16-s − 8.13e4i·17-s + 1.52e5·19-s − 5.44e5i·20-s + 2.10e5·22-s − 2.18e5i·23-s + ⋯ |
| L(s) = 1 | + 1.92i·2-s − 2.70·4-s + 1.25i·5-s + 1.63·7-s − 3.27i·8-s − 2.42·10-s − 0.466i·11-s − 0.711·13-s + 3.15i·14-s + 3.59·16-s − 0.974i·17-s + 1.16·19-s − 3.40i·20-s + 0.897·22-s − 0.781i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(2.261646785\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.261646785\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| good | 2 | \( 1 - 30.7iT - 256T^{2} \) |
| 5 | \( 1 - 787. iT - 3.90e5T^{2} \) |
| 7 | \( 1 - 3.93e3T + 5.76e6T^{2} \) |
| 11 | \( 1 + 6.82e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 + 2.03e4T + 8.15e8T^{2} \) |
| 17 | \( 1 + 8.13e4iT - 6.97e9T^{2} \) |
| 19 | \( 1 - 1.52e5T + 1.69e10T^{2} \) |
| 23 | \( 1 + 2.18e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 6.30e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 1.73e6T + 8.52e11T^{2} \) |
| 37 | \( 1 - 2.10e5T + 3.51e12T^{2} \) |
| 41 | \( 1 + 8.46e5iT - 7.98e12T^{2} \) |
| 43 | \( 1 + 6.45e5T + 1.16e13T^{2} \) |
| 47 | \( 1 - 8.25e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 3.70e6iT - 6.22e13T^{2} \) |
| 59 | \( 1 - 1.54e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 4.12e6T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.54e6T + 4.06e14T^{2} \) |
| 71 | \( 1 + 3.41e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 4.41e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + 2.48e6T + 1.51e15T^{2} \) |
| 83 | \( 1 + 4.22e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 - 4.68e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 4.86e7T + 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01979211649106347221308125134, −9.926883373566693648686522849908, −8.794669847560681655295971536846, −7.80864978212664691631814225950, −7.30318829378763344092277836158, −6.35463439010129186231298463506, −5.21164100280408180858402419505, −4.52598676293045316454817427635, −2.92037204310748838643333019874, −0.860709589528603839835316965160,
0.73115958801928298304423624265, 1.45335534407948283845502377110, 2.28440606531217541076731091968, 3.88234444113903362170118364619, 4.82146942972927487756357728483, 5.24132288722289403350009216390, 7.938729649721365826738589508070, 8.455246067397996685430323829177, 9.536179665925641501251612716082, 10.22934017628560951396755170717