Properties

Label 2-3e5-3.2-c8-0-47
Degree $2$
Conductor $243$
Sign $-i$
Analytic cond. $98.9930$
Root an. cond. $9.94952$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 13.4i·2-s + 75.5·4-s − 968. i·5-s + 2.98e3·7-s + 4.45e3i·8-s + 1.30e4·10-s + 2.10e4i·11-s + 2.98e4·13-s + 4.00e4i·14-s − 4.04e4·16-s + 8.81e4i·17-s + 1.98e5·19-s − 7.31e4i·20-s − 2.82e5·22-s + 2.35e5i·23-s + ⋯
L(s)  = 1  + 0.839i·2-s + 0.295·4-s − 1.54i·5-s + 1.24·7-s + 1.08i·8-s + 1.30·10-s + 1.43i·11-s + 1.04·13-s + 1.04i·14-s − 0.617·16-s + 1.05i·17-s + 1.52·19-s − 0.457i·20-s − 1.20·22-s + 0.841i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-i$
Analytic conductor: \(98.9930\)
Root analytic conductor: \(9.94952\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (242, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.294054023\)
\(L(\frac12)\) \(\approx\) \(3.294054023\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 13.4iT - 256T^{2} \)
5 \( 1 + 968. iT - 3.90e5T^{2} \)
7 \( 1 - 2.98e3T + 5.76e6T^{2} \)
11 \( 1 - 2.10e4iT - 2.14e8T^{2} \)
13 \( 1 - 2.98e4T + 8.15e8T^{2} \)
17 \( 1 - 8.81e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.98e5T + 1.69e10T^{2} \)
23 \( 1 - 2.35e5iT - 7.83e10T^{2} \)
29 \( 1 + 4.01e5iT - 5.00e11T^{2} \)
31 \( 1 + 1.52e6T + 8.52e11T^{2} \)
37 \( 1 - 1.15e5T + 3.51e12T^{2} \)
41 \( 1 + 1.01e6iT - 7.98e12T^{2} \)
43 \( 1 + 5.29e6T + 1.16e13T^{2} \)
47 \( 1 + 7.90e5iT - 2.38e13T^{2} \)
53 \( 1 - 1.17e7iT - 6.22e13T^{2} \)
59 \( 1 - 1.80e6iT - 1.46e14T^{2} \)
61 \( 1 - 2.04e7T + 1.91e14T^{2} \)
67 \( 1 - 2.98e7T + 4.06e14T^{2} \)
71 \( 1 - 2.35e7iT - 6.45e14T^{2} \)
73 \( 1 - 1.14e7T + 8.06e14T^{2} \)
79 \( 1 + 6.12e7T + 1.51e15T^{2} \)
83 \( 1 - 3.97e7iT - 2.25e15T^{2} \)
89 \( 1 - 3.20e7iT - 3.93e15T^{2} \)
97 \( 1 + 4.10e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11943540365145370251741640330, −9.699891250385988938465598238912, −8.617407413370258168253233375375, −7.985783314981764830209700171801, −7.14819754582994588820106702361, −5.61391966123206741764424787502, −5.12457919689073764195906125227, −4.01479261986416798397778573519, −1.82343286809545189835565432957, −1.31740432271627288873029383762, 0.71385871799284664407919424150, 1.84034379221617262622985881633, 3.04408707989617941843731250588, 3.55990619852341665584668864071, 5.35715114687315713283115283440, 6.54126388010840220274866761778, 7.37871625023183843610696384425, 8.489608023479173131982653977558, 9.841688336583839495705179303348, 10.89882398556768307689560876060

Graph of the $Z$-function along the critical line