Properties

Label 2-3e5-3.2-c8-0-16
Degree $2$
Conductor $243$
Sign $-i$
Analytic cond. $98.9930$
Root an. cond. $9.94952$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.58i·2-s + 253.·4-s − 619. i·5-s − 2.36e3·7-s + 807. i·8-s + 982.·10-s + 4.58e3i·11-s − 2.19e4·13-s − 3.75e3i·14-s + 6.36e4·16-s − 9.32e4i·17-s − 2.32e4·19-s − 1.57e5i·20-s − 7.27e3·22-s + 4.75e5i·23-s + ⋯
L(s)  = 1  + 0.0990i·2-s + 0.990·4-s − 0.991i·5-s − 0.985·7-s + 0.197i·8-s + 0.0982·10-s + 0.313i·11-s − 0.768·13-s − 0.0976i·14-s + 0.970·16-s − 1.11i·17-s − 0.178·19-s − 0.982i·20-s − 0.0310·22-s + 1.70i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-i$
Analytic conductor: \(98.9930\)
Root analytic conductor: \(9.94952\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (242, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.242544171\)
\(L(\frac12)\) \(\approx\) \(1.242544171\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 1.58iT - 256T^{2} \)
5 \( 1 + 619. iT - 3.90e5T^{2} \)
7 \( 1 + 2.36e3T + 5.76e6T^{2} \)
11 \( 1 - 4.58e3iT - 2.14e8T^{2} \)
13 \( 1 + 2.19e4T + 8.15e8T^{2} \)
17 \( 1 + 9.32e4iT - 6.97e9T^{2} \)
19 \( 1 + 2.32e4T + 1.69e10T^{2} \)
23 \( 1 - 4.75e5iT - 7.83e10T^{2} \)
29 \( 1 + 2.73e5iT - 5.00e11T^{2} \)
31 \( 1 + 1.69e6T + 8.52e11T^{2} \)
37 \( 1 - 3.17e5T + 3.51e12T^{2} \)
41 \( 1 - 3.05e6iT - 7.98e12T^{2} \)
43 \( 1 - 2.19e6T + 1.16e13T^{2} \)
47 \( 1 - 1.37e6iT - 2.38e13T^{2} \)
53 \( 1 - 7.48e6iT - 6.22e13T^{2} \)
59 \( 1 - 1.19e7iT - 1.46e14T^{2} \)
61 \( 1 - 2.75e6T + 1.91e14T^{2} \)
67 \( 1 - 3.39e7T + 4.06e14T^{2} \)
71 \( 1 + 4.59e7iT - 6.45e14T^{2} \)
73 \( 1 + 1.26e7T + 8.06e14T^{2} \)
79 \( 1 - 5.77e6T + 1.51e15T^{2} \)
83 \( 1 - 8.17e6iT - 2.25e15T^{2} \)
89 \( 1 - 3.98e7iT - 3.93e15T^{2} \)
97 \( 1 - 7.32e6T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01136930243413009021810851315, −9.727070430834745831876339656850, −9.225888416933050905830409944691, −7.73159690400259489786626542103, −7.05723147725680078449145068680, −5.88367504653806412528233287242, −4.93986250764028581046574187381, −3.45704390783042498554282302512, −2.32663355219925193379016147992, −1.07429806812831163445729073675, 0.26252442185126875329350610196, 2.01401616897304973178226707024, 2.88740528650765810724602295921, 3.80173552866905243659164311145, 5.66125946340607312085602350190, 6.64769708958372467844823134763, 7.08797059037098821340595321117, 8.400011078200365016845030731600, 9.767966281987531128904884372537, 10.59717027528035472580422191642

Graph of the $Z$-function along the critical line